pandas的数据结构

本文介绍了pandas的两个核心数据结构——Series和DataFrame。Series是一种一维数组对象,具有内置索引,可以进行多种数据操作,如改变索引、数据运算和检查缺失值。DataFrame是二维表格型数据结构,允许存储不同类型的列,并提供了如head方法、列的定制排序等功能。文章详细阐述了这两个数据结构的使用方法和操作实例。
摘要由CSDN通过智能技术生成

一、pandas的撒胡菊架构介绍

pandas有两个主要的数据结构:series和dataframe。它们是解决大部分应用可靠、易于使用的基础。

1.1 series

1.1.1series怎么使用?

Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成。仅由一组数据即可产生最简单的Series:
概括: 给定一些数,用series会生成 一个索引(排列号),它是从0开始排序。

In [11]: obj = pd.Series([4, 7, -5, 3])

In [12]: obj
Out[12]: 
0    4
1    7
2   -5
3    3
dtype: int64

1.1.2series中对数据的一些操作

1)看看index是啥

我们可以通过series的value和index属性获取其数组表示形式和索引对象

In [13]: obj.values
Out[13]: array([ 4,  7, -5,  3])
# values代表的是这个数组中的数值
In [14]: obj.index  # like range(4)
#index是前面序列号的排序方式和数值
Out[14]: RangeIndex(start=0, stop=4, step=1)
2)怎么改变index对应的形式

我们可以自己来改变数据点的索引

In [15]: obj2 = pd.Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c'])

In [16]: obj2
Out[16]: 
d    4
b    7
a   -5
c    3
dtype: int64

In [17]: obj2.index
Out[17]: Index(['d', 'b', 'a', 'c'], dtype='object')
3)调用series中的单个值
In [18]: obj2['a']
Out[18]: -5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值