16、PyTorch教程--- 从零开始训练一个卷积神经网络

21 篇文章 1 订阅 ¥19.90 ¥99.00
本章介绍如何使用PyTorch从零开始创建一个神经网络模型。内容涵盖定义网络结构,初始化权重,实现sigmoid激活函数的前馈模式,以及详细讲解训练和预测模型的步骤。
摘要由CSDN通过智能技术生成

在本章中,我们将重点讨论从头开始创建一个神经网络模型。这意味着使用PyTorch创建相应的神经网络或示例神经网络。

步骤1
创建一个必要的类,并设置相应的参数。这些参数包括具有随机值的权重。

class Neural_Network(nn.Module):
   def __init__(self, ):
      super(Neural_Network, self).__init__()
      self.inputSize = 2
      self.outputSize = 1
      self.hiddenSize = 3
      # weights
      self.W1 = torch.randn(self.inputSize, 
      self.hiddenSize) # 3 X 2 tensor
      self.W2 = torch.randn(self.hiddenSize, self.outputSize) # 3 X 1 tensor

步骤2
创建一个具有 sigmoid 函数的前馈模式函数。

def forward(self, X):
   self.z = torch.matmul(X, self.W1) # 3 X 3 ".dot" 
   does not broadcast in PyTorch
   self.z2 = self.sigmoid(self.z) # acti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Knowledgebase

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值