13、YOLOv8教程--- 使用KITTI数据集为Yolo样式的车辆检测生成锚框 第二部分。

14 篇文章 5 订阅 ¥19.90 ¥99.00
本文介绍如何使用K-means聚类和IOU在YOLOv8中生成锚框,以提高车辆检测的性能。通过计算不同数量的聚类,选择5个锚框以保持与YOLOv2的一致性,同时确保与边界框的高重叠。锚框的分配基于IOU最大化,确保对每个对象的精确预测。
摘要由CSDN通过智能技术生成

3. 使用K均值聚类生成锚框

有许多计算检测任务边界框的方法。一种方法是直接预测边界框的值,然而这种方法容易出现错误,因为它倾向于支持具有大尺寸的边界框。此外,训练过程不稳定,因为要预测的值的范围可以变化很大。另一种方法是使用称为锚框或先验的模板边界框,然后在这些锚框之上进行修正,以匹配实际边界框的尺寸。在其他模型中,如单发检测(SSD),在一组固定的手动选择的大小和纵横比的边界框上进行修正。例如,在SSD中,每个单元格预测9个锚/先验框,基于手动选择的纵横比和大小。然而,这并不保证锚框是边界框的良好候选。在YOLO中,不使用锚框,而是直接预测边界框的位置和尺寸。在YOLOv2中,第一步是计算良好的候选锚框。这是通过使用K均值聚类来实现的。然而,使用直接的欧氏距离度量K均值会导致大型边界框的错误,但不会导致小型边界框的错误。因此,在YOLOv2中,使用交并比(IOU)作为距离度量。IOU计算是基于所有边界框都位于一个点的假设进行的,即只使用宽度和高度作为特征。下图显示了高度和宽度相互绘制。固定的斜率表明大多数边界框具有特定的预定义纵横比和大小。这并不令人意外,因为人和车辆预计具有一定的固定尺寸。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Knowledgebase

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值