20、PyTorch教程---词嵌入

21 篇文章 1 订阅 ¥19.90 ¥99.00
本文介绍了如何在PyTorch中实现词嵌入模型word2vec,详细讲解了通过Skip Gram模型创建词嵌入的过程,包括库的实现、类的定义以及模型的主要方法。
摘要由CSDN通过智能技术生成

在这一章中,我们将了解著名的词嵌入模型 - word2vec。Word2vec模型用于借助一组相关模型生成词嵌入。Word2vec模型是用纯C代码实现的,梯度是手动计算的。

下面是在PyTorch中实现word2vec模型的步骤:

步骤1
按照以下方式实现词嵌入中的库 -

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F

步骤2
使用名为word2vec的类实现词嵌入的Skip Gram模型。它包括emb_size、emb_dimension、u_embedding、v_embedding等类型的属性。

class SkipGramModel(nn.Module):
   def __init__(self, emb_size, emb_dimension):
      super(SkipGramModel, self).__init__()
      self.emb_size = emb_size
      self.emb_dimension = emb_dimension
      self.u_embeddings = nn.Embedding(emb_size, emb_dimension, sparse=True)
      self.v_embeddings =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Knowledgebase

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值