在本章中,我们将了解可以使用 TensorFlow 框架实现的神经网络训练的各个方面。
以下是可以评估的十个建议 −
反向传播(Back Propagation)
反向传播是计算偏导数的简单方法,包括适用于神经网络的基本组合形式。
随机梯度下降(Stochastic Gradient Descent)
在随机梯度下降中,一个批次(batch)是用户在单次迭代中用来计算梯度的示例的总数。到目前为止,假设批次是整个数据集。最佳示例是在谷歌规模上工作;数据集通常包含数十亿甚至数千亿的示例。
Learning Rate Decay
自适应学习率是梯度下降