25、TensorFlow教程--- 创建图表神经网络训练的建议

本文介绍了使用 TensorFlow 框架进行神经网络训练的关键方面,包括反向传播、随机梯度下降、学习率衰减、dropout 技术以及最大池化和 LSTM 在减少过拟合和提升模型性能中的应用。
摘要由CSDN通过智能技术生成

在本章中,我们将了解可以使用 TensorFlow 框架实现的神经网络训练的各个方面。

以下是可以评估的十个建议 −

反向传播(Back Propagation)
反向传播是计算偏导数的简单方法,包括适用于神经网络的基本组合形式。

随机梯度下降(Stochastic Gradient Descent)
在随机梯度下降中,一个批次(batch)是用户在单次迭代中用来计算梯度的示例的总数。到目前为止,假设批次是整个数据集。最佳示例是在谷歌规模上工作;数据集通常包含数十亿甚至数千亿的示例。

Learning Rate Decay

自适应学习率是梯度下降

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Knowledgebase

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值