12、YOLOv8教程--- 使用KITTI数据集为Yolo样式的车辆检测生成锚框 第一部分。

14 篇文章 5 订阅 ¥19.90 ¥99.00
本文介绍了如何为YOLOv2计算锚框,特别是使用K均值聚类针对Kitti数据集设计锚框。通过数据准备、探索性数据分析、锚框生成、分配给目标等步骤,解释了YOLOv2如何处理目标检测,特别是在处理遮挡和密集场景中的挑战。同时,文章强调了EDA在机器学习算法中的重要性。
摘要由CSDN通过智能技术生成

在这篇文章中,我将介绍为YOLO9000(或YOLOv2)计算锚框的步骤。YOLOv2是一个结合了分类和边界框预测的框架,我们直接预测每个单元格中的对象以及对锚框的修正。更具体地说,YOLOv2将整个图像分成了13X13的网格单元格,然后在每个位置放置了5个锚框,最后预测了这些锚框上的修正。YOLOv2进行了5次预测,对应于中心位置(x和y)、高度和宽度的修正,以及预测的边界框与实际边界框之间的交并比(IOU)。YOLOv2的一个独特特点是,所有的预测都具有小于1的幅度,因此一个类型的成本支配优化的机会不太可能发生。YOLOv2的另一个独特特点是,锚框是使用K均值聚类专门为给定数据集设计的。与其他基于锚框(或先验)的方法不同,如单发检测(SSD),YOLOv2不假设边框的纵横比或形状。因此,一般情况下,YOLOv2具有较低的定位损失,并且目标与网络预测之间具有较高的交并比(IOU)。本文的其余部分按以下方式组织:

1. 数据准备
2. 探索性数据分析
3. 使用K均值聚类生成锚框
4. 将锚框分配给实际目标
5. 数据准备

首先,我从kitti目标检测数据集下载了图像和标签。我下载了汽车左侧摄像头的检测标签和图像。下载后,我将图像和标签分别放在名为kitti_land和kitt

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Knowledgebase

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值