题目1:二叉树的镜像
操作给定的二叉树,将其变换为源二叉树的镜像。
链接:
剑指Offer(第2版):P157
思路标签:
- 数据结构:树
- 算法:递归
解答:
1. C++
- 通过绘制二叉树的图,并简单分析,可以知道:二叉树的镜像相当于是将每个含有子结点的结点的左右子结点进行交换。利用递归实现。
/*
struct TreeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
TreeNode(int x) :
val(x), left(NULL), right(NULL) {
}
};*/
class Solution {
public:
void Mirror(TreeNode *pRoot) {
if(pRoot == nullptr)
return;
if(pRoot->left == nullptr && pRoot->right == nullptr)
return;
TreeNode* pTemp = pRoot->left;
pRoot->left = pRoot->right;
pRoot->right = pTemp;
if(pRoot->left)
Mirror(pRoot->left);
if(pRoot->right)
Mirror(pRoot->right);
}
};
题目2:对称的二叉树
请实现一个函数,用来判断一棵二叉树是不是对称的。如果二叉树和它的镜像一样,那么它是对称的。
链接:
剑指Offer(第2版):P159
思路标签:
- 数据结构:树
- 算法:递归
解答:
1. C++
- 二叉树中的存在3种遍历算法;其中的前序遍历算法是先遍历根结点,再遍历左子结点,最后遍历右子结点。
- 构造一种对称的前序遍历算法:先遍历根结点,再遍历右子结点,最后遍历左子结点。
- 通过绘制二叉树图可以发现,对称二叉树的前序遍历和对称前序遍历的序列是相同的;否则,不相同。
- 对于一些特殊的二叉树,如所有结点的值均相同,但不是对称二叉树的情况,我们通过比较前序遍历和对称前序遍历的序列发现也是相同的,所以为了避免这种情况带来的误判,我们只需要在遍历的过程中将nullptr的空结点加入序列即可。
- 在判断的过程中,不必遍历完整棵树再进行序列的比较,只需在遍历的过程中进行比较即可。
/*
struct TreeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
TreeNode(int x) :
val(x), left(NULL), right(NULL) {
}
};
*/
class Solution {
public:
bool isSymmetrical(TreeNode* pRoot)
{
return Symmetrical(pRoot, pRoot);
}
bool Symmetrical(TreeNode* pRoot1, TreeNode* pRoot2){
if(pRoot1 == nullptr && pRoot2 == nullptr)
return true;
if(pRoot1 == nullptr || pRoot2 == nullptr)
return false;
if(pRoot1->val != pRoot2->val)
return false;
return Symmetrical(pRoot1->left, pRoot2->right) && Symmetrical(pRoot1->right, pRoot2->left);
}
};