面试前
- 面试前有过沟通,因为当时在上课,所以约定的时间为昨天晚上7点。面试官素质很好,时间刚过电话就来了。
面试回顾
- 面试官首先问了我最近有在做什么工作,我简单了说了些最近在学的算法(感觉答得很差,第一印象就不行了)
- 紧接着问了些项目的事,因为我项目不多,单就其中的一个项目聊得很深。主要通过项目谈用到的机器学习算法,重点问了数据的预处理等工作(我显然没答好,项目是很久以前做的了,而且最近也没做什么项目。项目很重要,而且参加了就要尽善尽美,多用一些方法去改进结果,不然面试官都不知道哪些算法可以问,哪些不行,阿里的面试官素质很高,可能是不想虐我这样的菜鸡)
- 之后问了一些比赛中用到的算法(我只用了Logistics回归,还没说清楚,项目不多的,对每一个项目都一定要熟悉)。然后问到了L1,L2正则化,并问了什么时候用L1,什么时候用L2(我就说了下什么是L1,L2正则化,具体的也没说清楚。)
- 在之后看到我简历里写的爬虫,就问了我关于爬虫的一个问题:当我们在某一个网站上反复爬了很多数据的时候,网站开启反爬机制,怎么破?感觉还有涉及到一些分布式爬虫的。我的简历上还有数据可视化,问我一般做哪些可视化,一句什么时候用直方图问傻我了,汗颜。简历上写的一定要熟练,不会的技术不要瞎写。
- 进行到“你有什么要问我的吗?”我咨询了写学习大数据研发这方面的经验,他说企业一般是需要用到Hadoop等,数据清洗工作也很重要。
- 最后的最后,他说:我们这边对算法的要求可能更高一些,你在继续好好努力吧。我道了声谢谢,说了再见后,他说了拜拜。
个人总结
- 一定要对机器学习的算法有深入理解,一定要注意基础和细节,项目经历一定要多,而且比赛结果很重要。理论能力在实习生面试中占很大比重,实操能力也需要,但如果过不了看中基础能力的一面,何谈二面的代码能力考核。
- 加油,我会卷土重来!