背包问题

博客围绕背包问题展开,给出题目:在n个物品中选若干装入大小为m的背包,求最多能装多满,并列举两个样例。同时阐述解题思路,从最后一个物品开始思考,分别考虑装入和不装入物品的情况,逐步往前推导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背包问题

题目:
在n个物品中挑选若干物品装入背包,最多能装多满?假设背包的大小为m,每个物品的大小为A[i]

样例
样例 1:
输入: [3,4,8,5], backpack size=10
输出: 9

样例 2:
输入: [2,3,5,7], backpack size=12
输出: 12

解题思路:从最后一个物品开始思考,如果前n - 1个物品可以拼出m那么前n个物品必然可以拼出m,此时不需要装入最后一个物品;如果前n - 1个物品不能拼出m,那么装入最后一个物品判断是否可以拼出m。同样,判断第n - 1个物品是否可以拼出m - A[n - 1]的重量分别考虑装入和不装入情况,以此类推

public class Solution {
    /**
     * @param m: An integer m denotes the size of a backpack
     * @param A: Given n items with size A[i]
     * @return: The maximum size
     */
    public int backPack(int m, int[] A) {
        int len = A.length;
        if(len == 0)
            return 0;
        
        //数组定义: dp[i][j]表示装入前i个物品拼出j重量是否可行
        boolean dp[][] = new boolean[len + 1][m + 1];
		//true可以拼出, false不可以
        dp[0][0] = true;
        
		/**
		状态方程:dp[i][j] = dp[i - 1][j] || dp[i - 1][j - A[i]]
		**/
        for(int i = 1; i <= len; i++) {
            dp[i][0] = true;
            
            for(int j = 0; j <= m; j++) {
                dp[i][j] = dp[i - 1][j];
                if(j >= A[i - 1])
                    dp[i][j] = dp[i - 1][j] || dp[i - 1][j - A[i - 1]];
            }
        }
        
        int ans = 0;
        for(int i = m; i >= 0; i--) {
            if(dp[len][i]) {
                ans = i;
                break;
            }
        }
        
        return ans;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值