代码随想录算法训练营Day31 | 贪心算法理论 | 455. 分发饼干 | 376. 摆动序列 | 53. 最大子序和

贪心算法理论

做到每一阶段的局部最优,可以得到全局最优。但是每一阶段的最优是本地的,不依赖之后的选择。因此,贪心算法的顺序通常是自上而下的。作为对比,动态规划(DP)的顺序是自下而上的,每一步选择依赖于当前问题的子问题(下一步)结果。

选择贪心算法的时机:模拟一下,感觉可以局部最优推出全局最优,也想不到什么反例,那就可以尝试贪心算法。

理论上的四步:

  • 将问题分解为若干个子问题
  • 找出适合的贪心策略
  • 求解每一个子问题的最优解
  • 将局部最优解堆叠成全局最优解

实际上的贪心算法,最困难的是找到正确的贪心策略,从而使局部最优推导出全局最优,这一步是捉摸不定,没有规律的。

455. 分发饼干

题目链接 | 解题思路

直觉上,为了最大化满足的孩子的数量,要尽可能利用好每一块饼干。于是,思路可以是“大饼干喂给大孩子” 或 “小饼干喂给小孩子”。这两种局部最优都不依赖于任何子问题,直接基于当前的条件进行选择。

这两种不同的思路,代码的写法也不同,要注意所循环的数组是哪一个(哪个变量是动态变化的)。

class Solution:
    def findContentChildren(self, g: List[int], s: List[int]) -> int:
        count = 0
        g.sort()
        s.sort()
        child_idx = 0
        for cookie_idx in range(len(s)):
            if child_idx == len(g):
                break
            if s[cookie_idx] >= g[child_idx]:
                child_idx += 1
                count += 1
        return count

376. 摆动序列

题目链接 | 解题思路

首先注意到题目只要求最长摆动子序列的长度,所以没必要记录最长的摆动子序列,一个计数器即可。

贪心算法的逻辑:从头开始,依次删除数列中所有单调子序列中的非首尾元素,剩下的就是最长的摆动序列。
局部最优:删除当前单调子序列中的非首尾元素。

自然的,我们会记录如下两个变量:
prev_diff := nums[i+1] - nums[i] 后一个元素与当前元素值的差
curr_diff := nums[i] - nums[i-1] 当前元素与前一个元素值的差
当这两个变量值的符号不同时,就遇到了一个摆动的峰值。这里,prev_diff * curr_diff < 0 实际上确定了两个摆动序列的元素,即 nums[i]nums[i+1]。因为无论 nums[i+1] 后面的元素如何变化,nums[i+1] 都是摆动序列的一部分。这导致摆动序列的最后一个元素不会被这个条件所确定,所以 count 初始化为 1。

有三种情况需要考虑:

  1. 存在一个子序列,首尾均属于摇摆序列,但是中间存在相同元素(平坡)

    这种情况可以选择仅保留平坡的第一个或最后一个元素。保留最后一个元素,则允许 prev_diff=0,只要 curr_diff 确定不为 0 即可,此时可以将当前元素加入摆动子序列。

  2. 首尾两端
    题目中规定,如果数组长度为1,则默认为摆动序列;如果长度为2,且两个元素值不等,则为摆动序列。这样的情况可以单独列出 if 考虑,也可以在数组开头添加一个和 nums[0] 相等的元素。这两种方法都使得 prev_diff 应该初始化为 0,从而可以正常计算数组的第一个元素。

  3. 单调序列中存在平坡
    之前的双指针中,慢指针的更新一般依赖于快指针是否满足特定条件。之前的两种情况中,每次移动都会进行更新 prev_diff = curr_diff,这使得单调序列中的平坡的最后一个元素(saddle point)也会被认为是摆动序列的一个元素。

    修改方案是,只有当前元素之后出现了明确的变化(curr_diff > 0curr_diff < 0),才进行 prev_diff 的更新。这样保证了prev_diff 记录了前一次变化的更新,而非当前元素和前一个元素的差。
    值得一提的是,这样的更新条件导致 prev_diff=0 仅仅会出现在数组的开头。

class Solution:
    def wiggleMaxLength(self, nums: List[int]) -> int:
        if len(nums) == 1:
            return 1

        if len(nums) == 2:
            if nums[0] != nums[1]:
                return 2
            else:
                return 1
        
        prev_diff = 0
        curr_diff = 0
        count = 1
        for idx in range(len(nums) - 1):
            curr_diff = nums[idx+1] - nums[idx]
            if prev_diff >= 0 and curr_diff < 0:        # diff changes: increase -> decrease
                count += 1
            if prev_diff <= 0 and curr_diff > 0:        # diff changes: decrease -> increase
                count += 1
            if curr_diff != 0:
                prev_diff = curr_diff
        return count

动态规划

创建一个二维的 dp 数组。输入中的任意一个数,都是某一个摆动序列的某个峰值/谷值(即使是 [1, 1, 1] 中的最后一个 1,也是以自己为开头和结尾的单元素摆动序列的峰值/谷值)。

  • dp[i][0]:当前 nums[:i] 中以 i 为峰值的最长摆动序列的长度
  • dp[i][1]:当前 nums[:i] 中以 i 为谷值的最长摆动序列的长度

状态转移等式为:

  • 0 < j < i, nums[j] < nums[i],则 dp[i][0] = max(dp[i][0], dp[j][1] + 1)
  • 0 < j < i, nums[j] > nums[i],则 dp[i][1] = max(dp[i][1], dp[j][0] + 1)

初始状态,每个数只考虑自己也一定有长度为 1 的摆动序列,所以初始化均为 1。

class Solution:
    def wiggleMaxLength(self, nums: List[int]) -> int:
        dp = [[1, 1] for _ in range(len(nums))]
        for i in range(1, len(nums)):
            for j in range(i):
                if nums[j] < nums[i]:
                    dp[i][0] = max(dp[i][0], dp[j][1] + 1)
            for j in range(i):
                if nums[j] > nums[i]:
                    dp[i][1] = max(dp[i][1], dp[j][0] + 1)
        return max(dp[-1][0], dp[-1][1])

53. 最大子序和

题目链接 | 解题思路

局部最优:如果当前记录的连续区间和为负数,结束当前区间;从下一个元素开始记录新的连续区间。负的连续和只会导致接下来的连续区间和越来越小(趁早甩掉累赘)。

这样的方法不断调整连续区间的起始位置,也就是贪心的优势所在,不需要像暴力算法一样不断从头开始。
对于连续区间的终止点,不用刻意记录。每次当前连续和超过记录的最大连续和时,更新最大连续和即可,这样保证了不用刻意记录终止点,也能得到最大的连续和。

在这里插入图片描述

负数与起始位置之间的关系是本题的难点,记录的最大连续和很好地解决了这个问题。要意识到“连续和为负数时,应该放弃当前区间,另起新区间;否则负的连续和只会不断拖累后面的正数”,则是本题的贪心逻辑。

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        max_result = float('-inf')
        curr_count = 0
        for i in range(len(nums)):
            curr_count += nums[i]
            if curr_count > max_result:
                max_result = curr_count
            if curr_count < 0:
                curr_count = 0
        return max_result

动态规划

dp[i]记录的是 nums[:i+1] 中以 nums[i] 为结尾的最大连续子数组的和。

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        dp = [float('-inf')] * len(nums)
        dp[0] = nums[0]
        for i in range(1, len(nums)):
            dp[i] = max([dp[i-1] + nums[i], nums[i]])
        return max(dp)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值