【MATLAB源码-第275期】基于粒子群优化算法的微电网综合能量调度与经济性分析,包含微型燃气轮机(MT),电网(GRID)以及储能系统(BA)。

操作环境:

MATLAB 2022a

1、算法描述

基于粒子群优化的微电网运行计划与经济性优化调度算法,旨在通过智能算法对微电网中的多种能源进行综合调度,最大化系统运行的经济性和效率。微电网是一种集成了分布式电源、储能设备、负荷管理的能源系统,能够在并网或离网状态下独立运行。随着分布式能源技术的不断发展,微电网在现代能源系统中扮演着越来越重要的角色。本文基于粒子群优化算法,分析了微电网中微型燃气轮机、电网购电以及储能系统的调度机制,探讨了如何通过优化算法实现整个系统的经济运行。

在这个微电网模型中,考虑了多种能源的动态调度,包括微型燃气轮机(MT),电网(GRID)以及储能系统(BA)。这些能源设备的共同特点是它们的输出可以在不同时间段进行灵活调整,从而适应不同的电力需求和经济目标。微型燃气轮机是一种常见的小型分布式发电设备,具有较高的发电效率和响应灵活性,适合应用于微电网中作为主要的发电来源。而电网购电则是为了在系统自身发电不足时,从大电网获取电力来平衡负荷需求。储能系统则能够在电力需求波动较大时,通过充放电平滑电力曲线,从而提高微电网的运行稳定性。

该系统的核心是基于粒子群优化算法(Particle Swarm Optimization,PSO)的调度机制。粒子群优化是一种群体智能算法,模仿了鸟群觅食的行为,通过个体间的信息交换来寻找问题的最优解。在微电网调度中,每个粒子代表一种可能的能源调度方案,包括微型燃气轮机、电网购电和储能系统的功率输出。算法通过对各个粒子进行位置和速度的更新,逐步逼近最优的能源调度方案。每个粒子会根据其当前方案的适应度来调整自己的状态,并根据全局最优解不断调整自身,以实现系统的整体优化。

在微电网的运行中,不同能源设备的运行成本和输出功率随时间变化。微型燃气轮机的发电成本通常与其发电量成正比,并且由于其燃料消耗特性,通常在低负荷时运行效率较低。在调度过程中,需要考虑如何在满足负荷需求的同时,尽量减少微型燃气轮机的运行成本。电网购电的成本与电价直接相关,电价通常会在一天内发生波动,因此在电价较低的时段从电网购电,能够有效降低系统运行成本。储能系统则能够在电价低时充电,在电价高时放电,通过这种方式实现电力的峰谷调节,进一步降低微电网的运行成本。

在该系统的调度过程中,粒子群优化算法的目标是最小化整个微电网的运行成本。首先,算法初始化时,会随机生成多个粒子,每个粒子代表一个调度方案。每个方案中,微型燃气轮机、电网和储能系统的输出功率在一天的24个时段内分别设定。在算法的迭代过程中,每个粒子的适应度会通过评估其调度方案的运行成本来计算,这个成本包括微型燃气轮机的燃料成本、电网购电成本以及储能系统的充放电成本。同时,算法还会考虑系统的约束条件,包括储能系统的荷电状态、电力平衡约束等,确保每个调度方案在技术上是可行的。

储能系统的运行在整个调度中起到了关键作用。储能系统可以在白天太阳能光伏发电量较大时存储多余的电力,并在夜间或电价较高时段释放电能,从而平衡发电与负荷之间的波动。在本文所描述的系统中,储能系统的荷电状态受到严格的约束,即储能系统的充放电量不能超过其容量限制。同时,算法还需要确保在整个调度过程中,储能系统的荷电状态始终处于合理范围内。如果储能系统的荷电状态超出限制,算法会对该调度方案进行惩罚,从而引导系统寻找更合理的调度策略。

电力平衡是该系统调度的重要约束条件之一。微电网的运行目标是确保在任何时间段内,微型燃气轮机的发电量、电网购电量、储能系统的放电量与负荷需求之间保持平衡。电力平衡约束的引入是为了保证系统能够在每个时段内正常运行。如果某个时段内的总发电量与负荷需求不匹配,算法会对这种不平衡情况进行惩罚,从而迫使粒子群优化算法调整各个能源设备的输出功率,直到满足电力平衡的要求。

粒子群优化算法在每次迭代时,都会根据当前最优解对各个粒子的速度和位置进行更新。通过不断地迭代,粒子群逐渐趋近于全局最优解。在该过程中,粒子个体之间的信息交换能够加速算法的收敛,同时避免陷入局部最优。每个粒子通过调整微型燃气轮机、电网购电和储能系统的输出功率,逐步找到一种能够最小化系统运行成本的调度方案。通过多次迭代后,系统最终输出一个全局最优的调度方案,该方案能够在一天内以最低的成本满足微电网的负荷需求。

在运行结果中,微型燃气轮机、电网购电和储能系统的运行计划被分别展示。微型燃气轮机的运行计划显示了在一天的24个时段中,燃气轮机的发电量如何随时间变化;电网购电计划则展示了微电网在不同时间段从电网获取电力的情况;储能系统的运行计划显示了储能系统的充放电过程。通过这些运行计划,系统能够直观地展示出微电网在优化调度下的能源分配情况。

整体来看,该系统通过粒子群优化算法,实现了对微电网中多种能源设备的综合调度,有效降低了系统的运行成本,并提高了能源的利用效率。在实际应用中,这种调度系统能够帮助微电网实现经济运行,同时增强微电网对负荷波动的应对能力,提高系统的整体稳定性。粒子群优化算法的引入,使得系统能够在复杂的能源调度问题中快速收敛到最优解,适合应用于实际的微电网能源管理中。

未来,随着新能源技术和智能电网的不断发展,微电网中的能源调度问题将变得更加复杂和多样化。更复杂的能源组合、更加动态的负荷需求以及更加多样化的用户行为,都将对微电网的能源调度提出新的挑战。粒子群优化算法作为一种具有强大适应性的优化工具,将在未来的能源调度中发挥更加重要的作用。通过与其他智能优化算法的结合,微电网的调度系统将进一步提升其在复杂环境下的适应能力和运行效率。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

  V

点击下方名片关注公众号获取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值