路径规划
文章平均质量分 71
Matlab程序猿
通信原理专业 擅长Matlab simulink等
展开
-
【MATLAB源码-第282期】基于matlab的白鲸优化算法(BWO)无人机三维路径规划,输出做短路径图和适应度曲线.
接着,个体根据适应度值决定其向更优位置的迁移,主要依赖于一种基于概率的策略,使得适应度较高的个体有更大的概率被选择进行位置更新。在算法的迭代过程中,白鲸们根据当前环境的反馈不断调整自己的位置,借助信息共享机制,群体中的每个个体都能够获取其他个体的优秀特征,从而推动整个种群向更优的方向移动。在自然界中,白鲸展现出高度的智能和协作能力,它们的行为模式为研究者提供了丰富的灵感,用于设计高效的优化算法。通过应用BWO算法,可以在超参数空间中进行高效的搜索,找到最优的参数组合,从而提升模型的准确性和鲁棒性。原创 2024-10-25 17:14:17 · 868 阅读 · 0 评论 -
【MATLAB源码-第276期】基于matlab的蚁群算法(ACO)无人机三维路径规划,输出做短路径图和适应度曲线.
其他蚂蚁在寻找食物时,会更倾向于选择信息素浓度较高的路径,这样,经过的信息素越多,路径被蚂蚁选择的概率就越高,从而形成一条优化的路径。接下来,算法会初始化信息素浓度,通常在初始时,所有边的浓度是相同的,代表着对所有路径的均等关注。具体而言,信息素的更新包括两部分:一部分是蒸发,代表信息素随时间的消散,这样可以减少不再被选择的路径的影响;此外,蚁群算法对于动态环境的适应能力也相对较强,可以处理问题的变化。在这个过程中,蚁群算法充分利用了信息素传递的特点,通过集体合作和信息共享,逐步找到问题的最佳解决方案。原创 2024-10-16 15:42:42 · 800 阅读 · 0 评论 -
【MATLAB源码-第269期】基于matlab的鱼鹰优化算法(OOA)无人机三维路径规划,输出做短路径图和适应度曲线.
鱼鹰优化算法(Osprey Optimization Algorithm,简称OOA)是一种新兴的基于自然界生物行为的智能优化算法,其灵感来自于鱼鹰这种海鸟在捕猎过程中的独特行为。鱼鹰是一种生活在全球范围内的猛禽,以鱼类为主食。它们的捕猎方式非常高效和精准,能够通过快速调整飞行路径和俯冲角度来捕捉猎物。鱼鹰的捕猎行为不仅表现出高度的灵活性,还能在不同环境中表现出很强的适应能力,这为我们设计优化算法提供了良好的启发。原创 2024-09-24 10:49:32 · 1073 阅读 · 0 评论 -
【MATLAB源码-第267期】基于matlab的鱼鹰优化算法(OOA)机器人栅格路径规划,输出做短路径图和适应度曲线
鱼鹰优化算法(Osprey Optimization Algorithm,简称OOA)是一种新兴的基于自然界生物行为的智能优化算法,其灵感来自于鱼鹰这种海鸟在捕猎过程中的独特行为。鱼鹰是一种生活在全球范围内的猛禽,以鱼类为主食。它们的捕猎方式非常高效和精准,能够通过快速调整飞行路径和俯冲角度来捕捉猎物。鱼鹰的捕猎行为不仅表现出高度的灵活性,还能在不同环境中表现出很强的适应能力,这为我们设计优化算法提供了良好的启发。原创 2024-09-19 14:44:52 · 946 阅读 · 0 评论 -
【MATLAB源码-第263期】基于matlab的帝企鹅优化算法(EPO)无人机三维路径规划,输出做短路径图和适应度曲线.
操作环境:1、算法描述帝企鹅优化算法(Emperor Penguin Optimizer,简称EPO)是一种基于自然现象的优化算法,灵感来自于帝企鹅在南极极寒环境中的生活习性。帝企鹅是一种群居动物,生活在极端环境下,它们通过独特的行为模式来维持体温并应对寒冷的环境。这种行为模式和策略,为我们提供了设计优化算法的灵感。原创 2024-09-10 13:25:06 · 798 阅读 · 0 评论 -
【MATLAB源码-第261期】基于matlab的帝企鹅优化算法(EPO)机器人栅格路径规划,输出做短路径图和适应度曲线
操作环境:1、算法描述帝企鹅优化算法(Emperor Penguin Optimizer,简称EPO)是一种基于自然现象的优化算法,灵感来自于帝企鹅在南极极寒环境中的生活习性。帝企鹅是一种群居动物,生活在极端环境下,它们通过独特的行为模式来维持体温并应对寒冷的环境。这种行为模式和策略,为我们提供了设计优化算法的灵感。原创 2024-09-05 16:04:33 · 981 阅读 · 0 评论 -
【MATLAB源码-第255期】基于matlab的长鼻浣熊优化算法(COA)无人机三维路径规划,输出做短路径图和适应度曲线.
在实际应用中,不同的优化问题具有不同的特性,例如目标函数的复杂度、解空间的大小、问题的非线性程度等。总的来说,长鼻浣熊优化算法(COA)是一种灵活、高效的群体智能优化算法,通过模拟长鼻浣熊的觅食行为,特别是它们在探索与利用阶段中的策略,来解决复杂的优化问题。在这一过程中,长鼻浣熊会利用其敏锐的嗅觉感知周围环境中的信息,例如气味的强弱、风向的变化、地形的起伏等。每个长鼻浣熊个体在搜索过程中不仅会考虑当前的目标函数值,还会参考其他维度的信息,例如解的历史表现、解空间的复杂度等。点击下方名片关注公众号获取。原创 2024-08-27 11:46:29 · 791 阅读 · 0 评论 -
【MATLAB源码-第254期】基于matlab的长鼻浣熊优化算法(COA)机器人栅格路径规划,输出做短路径图和适应度曲线
在实际应用中,不同的优化问题具有不同的特性,例如目标函数的复杂度、解空间的大小、问题的非线性程度等。总的来说,长鼻浣熊优化算法(COA)是一种灵活、高效的群体智能优化算法,通过模拟长鼻浣熊的觅食行为,特别是它们在探索与利用阶段中的策略,来解决复杂的优化问题。在这一过程中,长鼻浣熊会利用其敏锐的嗅觉感知周围环境中的信息,例如气味的强弱、风向的变化、地形的起伏等。每个长鼻浣熊个体在搜索过程中不仅会考虑当前的目标函数值,还会参考其他维度的信息,例如解的历史表现、解空间的复杂度等。点击下方名片关注公众号获取。原创 2024-08-26 09:34:42 · 581 阅读 · 0 评论 -
【MATLAB源码-第247期】基于matlab的秃鹰搜索优化算法(BES)无人机三维路径规划,输出做短路径图和适应度曲线.
操作环境:1、算法描述秃鹰搜索优化算法(Bald Eagle Search, BES)是一种新颖的群体智能优化算法,受自然界中秃鹰猎食行为的启发而设计。与其他群体智能算法类似,BES试图通过模拟自然界的某些行为来解决复杂的优化问题。该算法的核心思想是通过模拟秃鹰在猎食过程中的搜索、跟踪和捕捉猎物的行为,来逐步逼近优化问题的最优解。原创 2024-08-14 15:55:52 · 530 阅读 · 0 评论 -
【MATLAB源码-第246期】基于matlab的秃鹰搜索优化算法(BES)机器人栅格路径规划,输出做短路径图和适应度曲线
操作环境:1、算法描述秃鹰搜索优化算法(Bald Eagle Search, BES)是一种新颖的群体智能优化算法,受自然界中秃鹰猎食行为的启发而设计。与其他群体智能算法类似,BES试图通过模拟自然界的某些行为来解决复杂的优化问题。该算法的核心思想是通过模拟秃鹰在猎食过程中的搜索、跟踪和捕捉猎物的行为,来逐步逼近优化问题的最优解。原创 2024-08-13 21:01:05 · 999 阅读 · 0 评论 -
【MATLAB源码-第240期】基于matlab的孔雀优化算法(POA)无人机三维路径规划,输出做短路径图和适应度曲线.
这种选择机制模拟了自然选择的过程,促使群体中的个体逐代优化,逐步逼近问题的最优解。算法的核心在于模拟孔雀展示羽毛的过程,即通过对候选解的评价和比较,逐步找到最优解。为了模拟孔雀的展示行为,算法设计了一种展示机制。孔雀优化算法通过模拟孔雀展示羽毛、选择配偶和繁殖后代的过程,来搜索问题的最优解。综上所述,孔雀优化算法通过模拟孔雀求偶展示行为,利用适应度评价、交配繁殖和选择机制,实现对复杂优化问题的全局搜索和优化。每个孔雀个体不仅仅依赖自身的信息,还通过与其他个体的互动,获取更多的优化信息,提升搜索效率。原创 2024-07-31 19:08:20 · 432 阅读 · 0 评论 -
【MATLAB源码-第239期】基于matlab的孔雀优化算法(POA)机器人栅格路径规划,输出做短路径图和适应度曲线。
这种选择机制模拟了自然选择的过程,促使群体中的个体逐代优化,逐步逼近问题的最优解。算法的核心在于模拟孔雀展示羽毛的过程,即通过对候选解的评价和比较,逐步找到最优解。为了模拟孔雀的展示行为,算法设计了一种展示机制。孔雀优化算法通过模拟孔雀展示羽毛、选择配偶和繁殖后代的过程,来搜索问题的最优解。综上所述,孔雀优化算法通过模拟孔雀求偶展示行为,利用适应度评价、交配繁殖和选择机制,实现对复杂优化问题的全局搜索和优化。每个孔雀个体不仅仅依赖自身的信息,还通过与其他个体的互动,获取更多的优化信息,提升搜索效率。原创 2024-07-30 13:47:06 · 527 阅读 · 0 评论 -
【MATLAB源码-第236期】基于matlab的扩展卡尔曼滤波算法EKF目标追踪仿真,输出追踪轨迹图和定位误差。
扩展卡尔曼滤波(EKF)是一种针对非线性系统设计的状态估计算法,其基本原理是通过局部线性化,将非线性系统和观测方程转换为线性形式,以便应用卡尔曼滤波的理论。EKF结合了预测和更新两个步骤,通过迭代地调整状态估计,逐步逼近系统的真实状态。初始化步骤设定初始状态和噪声参数,是算法的起点。预测步骤利用动态模型和控制输入,估计下一时刻的系统状态,并更新协方差矩阵。更新步骤则结合观测数据,校正预测状态,并更新协方差矩阵。数据融合步骤记录并管理所有估计和观测数据,便于后续分析和展示。原创 2024-07-24 15:10:55 · 337 阅读 · 0 评论 -
【MATLAB源码-第234期】基于matlab的海鸥优化算法(SOA)无人机三维路径规划,输出做短路径图和适应度曲线.
在初始化阶段,算法首先生成一组随机的初始解,这些解代表海鸥群体在搜索空间中的初始位置。为了模拟海鸥的飞行行为,SOA 使用了具有随机性和确定性的混合策略,使得算法既能够保持较高的探索能力,又能在找到潜在的高质量解后快速收敛。与传统优化算法相比,SOA 在搜索过程中能够更好地平衡探索与开发的关系,即在保持对解空间充分探索的同时,能够迅速收敛到高质量的解。总的来说,海鸥优化算法是一种创新且高效的群体智能优化算法,通过模拟海鸥在自然界中的觅食和迁徙行为,设计出了一种具有强大搜索能力和快速收敛特性的优化策略。原创 2024-07-19 13:30:35 · 844 阅读 · 0 评论 -
【MATLAB源码-第233期】基于matlab的海鸥优化算法(SOA)机器人栅格路径规划,输出做短路径图和适应度曲线。
在初始化阶段,算法首先生成一组随机的初始解,这些解代表海鸥群体在搜索空间中的初始位置。为了模拟海鸥的飞行行为,SOA 使用了具有随机性和确定性的混合策略,使得算法既能够保持较高的探索能力,又能在找到潜在的高质量解后快速收敛。与传统优化算法相比,SOA 在搜索过程中能够更好地平衡探索与开发的关系,即在保持对解空间充分探索的同时,能够迅速收敛到高质量的解。总的来说,海鸥优化算法是一种创新且高效的群体智能优化算法,通过模拟海鸥在自然界中的觅食和迁徙行为,设计出了一种具有强大搜索能力和快速收敛特性的优化策略。原创 2024-07-18 11:21:59 · 774 阅读 · 0 评论 -
【MATLAB源码-第228期】基于matlab的鼠群优化算法(RSO)无人机三维路径规划,输出做短路径图和适应度曲线.
鼠群优化算法(Rat Swarm Optimization, RSO)是一种模仿鼠类群体觅食行为的优化算法。该算法属于群体智能算法,通过模拟鼠群在复杂环境中寻找食物的行为,来解决各种优化问题。鼠类在觅食过程中表现出的合作、竞争和信息共享等特点,为RSO提供了理论基础。鼠群优化算法通过模拟鼠类群体觅食行为,展现出强大的全局搜索能力和适应性。在各类优化问题中,RSO提供了一种有效的解决方案。然而,为了进一步提升其性能,还需要在避免早熟收敛、动态调整策略、多目标优化和参数自适应等方面进行深入研究和改进。原创 2024-06-20 20:25:48 · 691 阅读 · 0 评论 -
【MATLAB源码-第227期】基于matlab的北方苍鹰优化算法(NGO)机器人栅格路径规划,输出做短路径图和适应度曲线。
鼠群优化算法(Rat Swarm Optimization, RSO)是一种模仿鼠类群体觅食行为的优化算法。该算法属于群体智能算法,通过模拟鼠群在复杂环境中寻找食物的行为,来解决各种优化问题。鼠类在觅食过程中表现出的合作、竞争和信息共享等特点,为RSO提供了理论基础。鼠群优化算法通过模拟鼠类群体觅食行为,展现出强大的全局搜索能力和适应性。在各类优化问题中,RSO提供了一种有效的解决方案。然而,为了进一步提升其性能,还需要在避免早熟收敛、动态调整策略、多目标优化和参数自适应等方面进行深入研究和改进。原创 2024-06-19 18:55:46 · 719 阅读 · 0 评论 -
【MATLAB源码-第222期】基于matlab的改进蚁群算法三维栅格地图路径规划,加入精英蚁群策略。包括起点终点,障碍物,着火点,楼梯。
蚁群算法的灵感来自自然界中蚂蚁觅食的过程。蚂蚁在寻找食物时,会在路径上留下信息素(Pheromone),其他蚂蚁通过感知信息素的浓度来选择路径。这种信息素具有挥发性,时间久了会逐渐消失。信息素的浓度高低决定了蚂蚁选择路径的概率,路径上信息素越浓,选择该路径的概率就越大。初始化:设定蚁群的数量、信息素初始值、挥发系数、信息素重要性因子和启发式因子等参数。路径构建:每只蚂蚁从起始节点出发,依据信息素浓度和启发式信息选择下一步的路径,直到完成一条完整的路径。信息素更新。原创 2024-06-05 21:28:28 · 1324 阅读 · 0 评论 -
【MATLAB源码-第218期】基于matlab的北方苍鹰优化算法(NGO)无人机三维路径规划,输出做短路径图和适应度曲线.
综上所述,北方苍鹰优化算法是一种基于自然界捕猎行为的智能优化算法,通过模拟北方苍鹰的捕猎策略,实现对复杂优化问题的有效求解。NGO算法具有许多显著的优点,首先,它通过模拟北方苍鹰的自然捕猎行为,使得算法具有很强的鲁棒性和适应性。具体来说,该算法将搜索空间中的每一个可能解视为猎物,而算法中的个体(即苍鹰)则通过一系列的捕猎行为来不断逼近和捕获这些猎物,从而找到最优解。这一过程类似于自然界中的“优胜劣汰”,通过保留适应度高的个体,逐步淘汰适应度低的个体,从而保证算法朝着最优解的方向进化。原创 2024-05-31 20:21:52 · 724 阅读 · 0 评论 -
【MATLAB源码-第216期】基于matlab的北方苍鹰优化算法(NGO)机器人栅格路径规划,输出做短路径图和适应度曲线。
综上所述,北方苍鹰优化算法是一种基于自然界捕猎行为的智能优化算法,通过模拟北方苍鹰的捕猎策略,实现对复杂优化问题的有效求解。NGO算法具有许多显著的优点,首先,它通过模拟北方苍鹰的自然捕猎行为,使得算法具有很强的鲁棒性和适应性。具体来说,该算法将搜索空间中的每一个可能解视为猎物,而算法中的个体(即苍鹰)则通过一系列的捕猎行为来不断逼近和捕获这些猎物,从而找到最优解。这一过程类似于自然界中的“优胜劣汰”,通过保留适应度高的个体,逐步淘汰适应度低的个体,从而保证算法朝着最优解的方向进化。原创 2024-05-28 23:44:11 · 755 阅读 · 0 评论 -
【MATLAB源码-第214期】基于matlab的遗传算法GA最短路径路由优化算法仿真。
遗传算法是模拟生物进化过程的一种搜索启发式算法,它通过模拟自然选择和遗传学原理来解决优化问题。算法开始时会随机生成一组可能的解(称为种群),然后通过选择、交叉(杂交)和变异等遗传操作对这些解进行迭代改进,以期望产生越来越好的解。最短路径问题是图论中的一个经典问题,目标是找到图中两点之间的最短路径。这个问题可以表示为一个加权图,其中节点代表图中的点,边的权重代表从一个节点到另一个节点的成本或距离。适应度函数用于评估种群中每个个体的适应度,即路径的优劣。原创 2024-05-22 15:00:45 · 407 阅读 · 0 评论 -
【MATLAB源码-第211期】基于matlab的差分进化算法(DE)无人机三维路径规划,输出做短路径图和适应度曲线
操作环境:1、算法描述差分进化算法(Differential Evolution, DE)是一种有效的实数编码的进化算法,主要用于解决实值函数的全局优化问题。本文将详细介绍差分进化算法的背景、原理、操作步骤、参数选择以及实际应用,旨在提供一个全面的理解。原创 2024-05-19 22:21:47 · 402 阅读 · 0 评论 -
【MATLAB源码-第208期】基于matlab的改进A*算法和传统A*算法对比仿真;改进点:1.无斜穿障碍物顶点2.删除中间多余节点,减少转折。
通过对比传统A*算法和改进A*算法在实际应用中的效果,可以看出改进A*算法在多个方面表现出了显著的优势。在路径的安全性方面,改进A*算法通过避免斜穿障碍物顶点,有效减少了潜在的碰撞风险,保证了路径的安全可靠。在路径的平滑性方面,改进A*算法通过删除中间多余节点和减少转折,使路径更加直观和平滑,提高了路径的效率和可靠性。这种约束确保了路径的安全性,提高了算法在实际应用中的可靠性。传统A*算法生成的路径往往包含许多不必要的中间节点,这些节点会增加路径的转折点,使路径变得曲折,从而增加行驶时间和能耗。原创 2024-05-15 11:29:32 · 1634 阅读 · 0 评论 -
【MATLAB源码-第206期】基于matlab的差分进化算法(DE)机器人栅格路径规划,输出做短路径图和适应度曲线。
操作环境:1、算法描述差分进化算法(Differential Evolution, DE)是一种有效的实数编码的进化算法,主要用于解决实值函数的全局优化问题。本文将详细介绍差分进化算法的背景、原理、操作步骤、参数选择以及实际应用,旨在提供一个全面的理解。原创 2024-05-11 21:06:37 · 391 阅读 · 0 评论 -
【MATLAB源码-第203期】基于matlab的黏菌优化算法(SMA)机器人栅格路径规划,输出做短路径图和适应度曲线。
操作环境:1、算法描述黏菌优化算法(Slime Mould Algorithm, SMA)是一种新颖的启发式优化方法,其灵感来源于自然界中的真菌——黏菌。这种算法模拟了黏菌在寻找食物时的行为和网络形成策略。在本文中,我将详细介绍黏菌优化算法的背景、基本原理、算法步骤、参数选择、实际应用以及其优势和局限性。原创 2024-05-06 20:58:08 · 881 阅读 · 0 评论 -
【MATLAB源码-第202期】基于matlab的鸡群优化算法(CSO)无人机三维路径规划,输出做短路径图和适应度曲线
操作环境:1、算法描述鸡群优化算法(Chicken Swarm Optimization,简称CSO)是一种启发式搜索算法,它的设计灵感来源于鸡群的社会行为。这种算法由Xian-bing Meng等人于2014年提出,旨在解决复杂的优化问题,特别是那些传统优化算法难以处理的非线性、高维问题。原创 2024-04-30 23:56:01 · 629 阅读 · 0 评论 -
【MATLAB源码-第201期】基于matlab的黏菌群优化算法(SMA)无人机三维路径规划,输出做短路径图和适应度曲线
操作环境:1、算法描述黏菌优化算法(Slime Mould Algorithm, SMA)是一种新颖的启发式优化方法,其灵感来源于自然界中的真菌——黏菌。这种算法模拟了黏菌在寻找食物时的行为和网络形成策略。在本文中,我将详细介绍黏菌优化算法的背景、基本原理、算法步骤、参数选择、实际应用以及其优势和局限性。原创 2024-04-29 19:29:53 · 1045 阅读 · 0 评论 -
【MATLAB源码-第200期】基于matlab的鸡群优化算法(CSO)机器人栅格路径规划,输出做短路径图和适应度曲线。
操作环境:1、算法描述鸡群优化算法(Chicken Swarm Optimization,简称CSO)是一种启发式搜索算法,它的设计灵感来源于鸡群的社会行为。这种算法由Xian-bing Meng等人于2014年提出,旨在解决复杂的优化问题,特别是那些传统优化算法难以处理的非线性、高维问题。原创 2024-04-28 20:01:02 · 854 阅读 · 0 评论 -
【MATLAB源码-第197期】基于matlab的粒子群算法(PSO)结合人工蜂群算法(ABC)无人机联合卡车配送仿真。
该配送系统基于一个中心仓库(配送中心)和多个客户点,涵盖了一定数量的设施点(无人机操作站)。系统的主要目标是在满足客户需求的前提下,最小化配送成本,包括运输成本、时间成本和服务质量成本。系统通过粒子群优化算法(PSO)与人工蜂群算法(ABC)相结合的方式,实现对配送路径的优化。原创 2024-04-24 21:25:29 · 776 阅读 · 1 评论 -
【MATLAB源码-第141期】基于matlab的免疫优化算法在物流配送中心选址应用仿真,输出选址图以及算法适应度曲线。
免疫优化算法在物流配送中心选址中的应用是一个集成了信息科学、生物学原理和运筹学的跨学科研究领域。本文旨在探讨免疫优化算法在物流配送中心选址问题中的应用,包括算法的基本原理、模型构建、算法实现及其在实际物流配送中心选址问题中的应用案例分析。、MATLAB 源码获取。原创 2024-02-19 15:22:54 · 1501 阅读 · 0 评论 -
【MATLAB源码-第127期】基于matlab樽海鞘算法(SSA)无人机三维路径规划,输出做短路径图和适应度曲线。
在自然界中,樽海鞘群体中的个体通过协作与信息共享,共同寻找食物资源,这种行为在算法中被抽象为寻找最优解的过程。在自然界中,樽海鞘群体的行为表现出极高的组织性和效率,这使得它们成为算法设计的良好借鉴对象。2. **追随者更新规则:追随者的位置更新则更加复杂,它不仅依赖于领头者的位置,也受到其他追随者位置的影响。未来,随着对樽海鞘算法的深入研究和应用领域的拓展,其在解决复杂优化问题中的作用将越来越大。在每次迭代中,领头者根据目标函数的反馈调整自己的位置,引导群体向着更优的区域移动。原创 2024-01-26 10:36:21 · 705 阅读 · 0 评论 -
【MATLAB源码-第126期】基于matlab的樽海鞘算法(SSA)机器人栅格路径规划,输出做短路径图和适应度曲线。
在自然界中,樽海鞘群体中的个体通过协作与信息共享,共同寻找食物资源,这种行为在算法中被抽象为寻找最优解的过程。在自然界中,樽海鞘群体的行为表现出极高的组织性和效率,这使得它们成为算法设计的良好借鉴对象。2. **追随者更新规则:追随者的位置更新则更加复杂,它不仅依赖于领头者的位置,也受到其他追随者位置的影响。未来,随着对樽海鞘算法的深入研究和应用领域的拓展,其在解决复杂优化问题中的作用将越来越大。在每次迭代中,领头者根据目标函数的反馈调整自己的位置,引导群体向着更优的区域移动。原创 2024-01-26 10:33:50 · 690 阅读 · 0 评论 -
【MATLAB源码-第122期】基于matlab斑马优化算法(ZOA)无人机三维路径规划,输出做短路径图和适应度曲线。
综上所述,斑马优化算法是一个充满潜力的优化工具,它的灵感来源于自然界的斑马群体行为。在自然界中,斑马是一种社会性很强的动物,它们具有独特的群体行为模式,这些行为模式激发了斑马优化算法的开发。2. 全局与局部搜索的结合:算法结合了全局搜索和局部搜索的优点,能够在探索全局最优解的同时,对局部区域进行深入搜索。3. 模拟斑马行为:根据斑马的社会结构和行为特点,模拟斑马的社会互动,如领导选择、集体行动等。1. 初始化斑马群体:算法开始时,生成一组随机的解,代表斑马群体中的每一匹斑马。原创 2024-01-22 10:37:26 · 560 阅读 · 0 评论 -
【MATLAB源码-第121期】基于matlab的斑马优化算法(ZOA)机器人栅格路径规划,输出做短路径图和适应度曲线。
综上所述,斑马优化算法是一个充满潜力的优化工具,它的灵感来源于自然界的斑马群体行为。在自然界中,斑马是一种社会性很强的动物,它们具有独特的群体行为模式,这些行为模式激发了斑马优化算法的开发。2. 全局与局部搜索的结合:算法结合了全局搜索和局部搜索的优点,能够在探索全局最优解的同时,对局部区域进行深入搜索。3. 模拟斑马行为:根据斑马的社会结构和行为特点,模拟斑马的社会互动,如领导选择、集体行动等。1. 初始化斑马群体:算法开始时,生成一组随机的解,代表斑马群体中的每一匹斑马。原创 2024-01-22 10:33:30 · 958 阅读 · 0 评论 -
【MATLAB源码-第118期】基于matlab的蜘蛛猴优化算法(SMO)无人机三维路径规划,输出做短路径图和适应度曲线。
通过模拟蜘蛛猴的社会行为和适应性策略,SMO算法能够灵活地调整搜索策略,提高寻找最优解的效率和准确性。例如,当一个小组的领头猴连续多次未能找到更好的食物源时,小组成员可能会选择跟随其他小组的领头猴,或者最好的解决方案将被整个群体采纳。蜘蛛猴优化算法是一种模仿自然界生物行为的优化方法,它通过模拟蜘蛛猴的社会和觅食行为,有效地解决了复杂的优化问题。1. 局部搜索:小组内的蜘蛛猴根据领头猴的位置和自己的经验来更新自己的位置,即寻找新的可能解。这反映了蜘蛛猴在领头猴的引导下探索周围区域的行为。原创 2024-01-19 10:06:57 · 659 阅读 · 0 评论 -
【MATLAB源码-第117期】基于matlab的蜘蛛猴优化算法(SMO)机器人栅格路径规划,输出做短路径图和适应度曲线。
通过模拟蜘蛛猴的社会行为和适应性策略,SMO算法能够灵活地调整搜索策略,提高寻找最优解的效率和准确性。例如,当一个小组的领头猴连续多次未能找到更好的食物源时,小组成员可能会选择跟随其他小组的领头猴,或者最好的解决方案将被整个群体采纳。蜘蛛猴优化算法是一种模仿自然界生物行为的优化方法,它通过模拟蜘蛛猴的社会和觅食行为,有效地解决了复杂的优化问题。1. 局部搜索:小组内的蜘蛛猴根据领头猴的位置和自己的经验来更新自己的位置,即寻找新的可能解。这反映了蜘蛛猴在领头猴的引导下探索周围区域的行为。原创 2024-01-19 10:02:26 · 875 阅读 · 0 评论 -
【MATLAB源码-第114期】基于matlab的鹈鹕优化算法(POA)无人机三维路径规划,输出做短路径图和适应度曲线。
操作环境:1、算法描述鹈鹕优化算法(Pelican Optimization Algorithm,简称POA)是一种新兴的群体智能优化算法,灵感来源于鹈鹕的捕食行为。鹈鹕是一种以鱼类为主要食物的水鸟,它们捕食时通常会在空中盘旋,然后迅速俯冲入水中捕捉猎物。鹈鹕优化算法正是模仿了这一独特的捕食行为,通过模拟鹈鹕在寻找食物过程中的策略和运动模式来解决复杂的优化问题。原创 2024-01-16 15:00:32 · 577 阅读 · 0 评论 -
【MATLAB源码-第113期】基于matlab的孔雀优化算法(POA)机器人栅格路径规划,输出做短路径图和适应度曲线。
算法开始时,生成一组随机的孔雀(候选解),每个孔雀的尾羽开屏程度代表了该解决方案的质量。算法的每个迭代过程中,孔雀会根据自身和其他孔雀的表现,调整自己的羽毛开屏程度,这模拟了优化过程中解的更新。在算法中,每个孔雀代表一个潜在的解决方案,而它们的尾羽开屏行为则被用来模拟解决方案的搜索和优化过程。在优化过程中,孔雀通过比较自己的羽毛开屏与其他孔雀的开屏程度来判断自身的吸引力。通过这种方式,算法逐渐筛选出最佳的解决方案。POA算法的优点在于它的全局搜索能力较强,能有效避免局部最优解,适用于各种复杂的优化问题。原创 2024-01-16 14:55:02 · 577 阅读 · 0 评论 -
【MATLAB源码-第110期】基于matlab的哈里斯鹰优化算发(HHO)无人机三维路径规划,输出做短路径图和适应度曲线。
类似地,在算法中,搜索策略会根据目标函数的反馈和搜索空间的特性进行动态调整。随着算法进展,它逐渐转向更精确的追踪,集中力量在看似有希望的区域进行深入搜索。随着迭代次数增加,算法中的“能量”会逐渐减少,这影响了鹰群的搜索行为,使其更加专注于已发现的高质量解决方案。HHO算法的主要优点是它能够有效地平衡探索(全局搜索)和利用(局部搜索),这使得它在解决具有多个局部最优解的复杂问题时表现出色。此外,它能够根据问题的特性和解决方案的质量动态调整搜索策略,增强了算法的适应性和灵活性。、MATLAB 源码获取。原创 2024-01-13 21:34:51 · 575 阅读 · 0 评论 -
【MATLAB源码-第101期】基于matlab的蝙蝠优化算BA)机器人栅格路径规划,输出做短路径图和适应度曲线。
在蝙蝠算法中,每只虚拟蝙蝠代表一个解决方案,它们在解空间中飞行,通过发出声波并接收回声来评估自己的位置和猎物(即最优解)的位置。3. 声波强度和脉冲发射率:蝙蝠使用声波强度来感知猎物的距离,脉冲发射率与它们距离目标的近程度成反比。1. 频率调整:蝙蝠通过调整其发出的声波频率来控制飞行速度和方向,以便更好地探索和利用搜索空间。4. 局部搜索:当蝙蝠发现潜在的猎物或者接近全局最优解时,它会在当前位置周围进行局部搜索。2. 速度和位置更新:每只蝙蝠根据其频率、速度和当前位置来更新自己的位置。原创 2023-12-19 17:12:41 · 785 阅读 · 0 评论