基于WOA优化的RF参数调优与多维预测的模型优化方法

利用鲸鱼算法WOA优化随机森林RF,确定最优的叶子节点数与树数,然后将最优的参数输入随机森林模型中做多维输入单维输出的回归预测,实现提高模型预测精度的效果,模型中都有基本的注释和测试数据集,直接替换数据就可以使用,想要的可以加好友我。

ID:7430667081761891

Matlab建模


鲸鱼算法(Whale Optimization Algorithm, WOA)是一种基于鲸鱼行为的优化算法。它模拟了鲸鱼在寻找食物、繁殖和保护自己的过程中的行为,通过优化搜索空间中的解来解决各种问题。

随机森林(Random Forest, RF)是一种集成学习的方法,它由多个决策树组成,用于解决分类和回归问题。每个决策树在训练过程中使用随机选择的特征子集来构建,通过投票或平均预测结果来最终确定最终预测值。

结合鲸鱼算法和随机森林可以提高模型的预测精度。首先,我们使用鲸鱼算法来确定随机森林模型中的最优叶子节点数和树数。鲸鱼算法通过模拟鲸鱼搜索食物的行为,将搜索空间中的解逐步优化,从而找到最优的参数。在我们的问题中,最优的叶子节点数和树数将直接影响模型的预测性能。

一旦我们确定了最优的叶子节点数和树数,我们将这些参数输入到随机森林模型中,进行多维输入单维输出的回归预测。随机森林模型由多个决

以上相关代码,程序地址:http://matup.cn/667081761891.html

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
以下是用Keras框架编写WOA优化LSTM参数进行多变量预测的代码: 首先,我们需要导入必要的库: ```python import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Dense, LSTM from keras.optimizers import Adam ``` 然后,我们需要定义一些超参数: ```python n_features = 4 # 输入特征数 n_neurons = 50 # LSTM神经元数量 n_epochs = 100 # 训练轮数 batch_size = 32 # 批处理大小 ``` 接下来,我们需要定义WOA优化算法的相关函数: ```python def woa_init_search_space(num_params, search_space): return np.random.uniform(search_space[0], search_space[1], size=(num_params,)) def woa_get_fitness(model, X_train, y_train, X_valid, y_valid): model.fit(X_train, y_train, epochs=n_epochs, batch_size=batch_size, verbose=0) score = model.evaluate(X_valid, y_valid, verbose=0) return score[0] def woa_get_parameters(model): return model.get_weights() def woa_set_parameters(model, params): model.set_weights(params) def woa_search(model, X_train, y_train, X_valid, y_valid, search_space, max_iter=100): lb, ub = search_space num_params = len(model.get_weights()) best_fitness = float('inf') best_params = None a = 2 a2 = -1 for i in range(max_iter): for j in range(num_params): r1 = np.random.random() r2 = np.random.random() A = 2 * a * r1 - a C = 2 * r2 p = np.random.random() b = 1 l = (a2 - i) * (ub - lb) / max_iter + lb if p < 0.5: if abs(A) < 1: D = abs(C * best_params[j] - model.get_weights()[j]) new_pos = best_params[j] - A * D else: rand_param = woa_init_search_space(1, [lb, ub])[0] D = abs(C * rand_param - model.get_weights()[j]) new_pos = rand_param - A * D else: D = abs(best_params[j] - model.get_weights()[j]) new_pos = best_params[j] - b * D if new_pos < lb: new_pos = lb elif new_pos > ub: new_pos = ub model.get_weights()[j] = new_pos fitness = woa_get_fitness(model, X_train, y_train, X_valid, y_valid) if fitness < best_fitness: best_fitness = fitness best_params = woa_get_parameters(model) return best_params ``` 现在,我们可以加载并准备数据: ```python data = pd.read_csv('data.csv') X = data.iloc[:, :n_features].values y = data.iloc[:, n_features:].values n_samples = len(data) n_train = int(n_samples * 0.8) X_train, y_train = X[:n_train], y[:n_train] X_valid, y_valid = X[n_train:], y[n_train:] ``` 然后,我们可以构建模型并使用WOA优化算法来优化参数: ```python model = Sequential() model.add(LSTM(n_neurons, input_shape=(None, n_features))) model.add(Dense(y.shape[1])) model.compile(optimizer=Adam(), loss='mse') search_space = [-5, 5] woa_params = woa_search(model, X_train.reshape(-1, 1, n_features), y_train, X_valid.reshape(-1, 1, n_features), y_valid, search_space) woa_set_parameters(model, woa_params) ``` 最后,我们可以使用训练好的模型来进行预测: ```python X_test = np.array([[0.1, 0.2, 0.3, 0.4], [0.2, 0.3, 0.4, 0.5], [0.3, 0.4, 0.5, 0.6]]) y_pred = model.predict(X_test.reshape(-1, 1, n_features)) print(y_pred) ``` 以上就是用Keras框架编写WOA优化LSTM参数进行多变量预测的完整代码。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值