Maximal Rectangle(Hard)
Description
Given a 2D binary matrix filled with 0’s and 1’s, find the largest rectangle containing only 1’s and return its area.
For example, given the following matrix:
Return 6.
Subscribe to see which companies asked this question.
analysis
根据题目下给出的函数,可得题目所给的矩阵是以字符型的向量的向量表示的。之所以做这一道题是因为这道题是上一道题的关联题目。 观察可得到其实这道题与上一道题是承接关系的。
注意到,假设我们以每一行为底,以其往上的连续的1的数量为高,继而计算每一行的largestRectangleArea,最后通过比较每一行的largestRectangleArea就可以得到当中最大矩形的面积。
例如上图的矩阵利用上述方法其实可以变成
所以得到的最后的矩形的最大面积为6。 可以利用上一道题目得到的largestRectangleArea函数。
以下为我的代码。
Code
class Solution {
public:
int maximalRectangle(vector<vector<char> >& matrix) {
if(matrix.size() == 0) return 0;
vector<int> heights(matrix[0].size(),0);
int result = 0;
for(int i = 0 ; i < matrix.size();++i){
for(int j = 0 ; j < matrix[0].size() ; ++j){
if(matrix[i][j] == '0') heights[j] = 0;
else heights[j] = heights[j] + 1 ;
}
result = max(largestRectangleArea(heights) , result);
}
return result ;
}
private:
int largestRectangleArea(vector<int>& heights) {
if(heights.size() == 0) return 0;
vector<int> vec;
heights.push_back(0);
int result = 0;
//int num = 0;
for(int i = 0 ;i<heights.size();++i){
//if(vec.size() == 0) vec.push_back(i);
//else{
while(vec.size()>0 && heights[vec.back()] >= heights[i]){
int h = heights[vec.back()];
vec.pop_back();
int bottom ;
if(vec.size()==0) bottom = i;
else bottom = i-vec.back()-1;
if(h*bottom > result) result = h*bottom;
}
vec.push_back(i);
//}
}
return result;
}
};