Improve existing Classical Neural Networks to cope with images Improve existing classical neural networks to cope with images.
Classify grayscale images by using common Machine Learning techniques Utilising the main ML algorithms to cope with MINISET images.
Python_模块 1.模块设计及其功能描述查看:(1)设计模块AIP(Application Programming Interface),此步骤无需写具体实现方法'''this module aim to calculate salaries of employees #模块作用描述'''company = 'None' #定义全局变量def yearSalary(monthSalary): '''calculate annual salary base on statistics of
Python_文件处理 1.常用的两种打开文件的方法(以d盘目录下x.txt文件为例)#方法1:通过需要.close()进行关闭f = open(r'd:\x.txt','r')f.close()#方法2:直接用with打开文件with open(r'd:\x.txt','r') as f: pass2.常见的文件操作(1)读写内容#写入操作.write\.writelineswith open(r'x.txt','w') as f: #创建utf-8编码模式的系统文件 f.writ
Python_乌龟绘图 1.乌龟绘图入门#代码展示:import turtleturtle.showturtle()turtle.write("kryser")turtle.forward(300)turtle.color("gold")turtle.left(90)turtle.forward(300)turtle.goto(0,50)turtle.goto(0,0)turtle.penup()turtle.goto(0,50)turtle.pendown()turtle.circle(100)
Python_调试常用结构 1.try...except...else...finally结构,以计算除法为例,并通过traceback模块将异常信息写入名为a的txt类型文件(文件初始为空)中:import tracebacktry: a = input('请输入被除数:') b = input('请输入除数') c = float(a)/float(b)except ZeroDivisionError: print('除数不能为0!') with open('d:/a.txt','
Python_对象(组合、工厂模式与单例模式、类创建) 1.定义发动机类Motor、底盘类Chassis、座椅类Seat,车辆外壳类Shell,并使用组合关系定义汽车类。其他要求如下:定义汽车的run()方法,里面需要调用Motor类的work()方法,也需要调用座椅类Seat的work()方法,也需要调用底盘类Chassis的work()方法。'''定义发动机类Motor、底盘类Chassis、座椅类Seat,车辆外壳类Shell,并使用组合关系定义汽车类。其他要求如下:定义汽车的run()方法,里面需要调用Mot...
Python_对象_实战 1.设计一个名为 MyRectangle 的矩形类来表示矩形。这个类包含: (1) 左上角顶点的坐标:x,y (2) 宽度和高度:width、height (3) 构造方法:传入 x,y,width,height。如果(x,y)不传则默认是 0,如果 width 和 height 不传,则默认是 100. (4) 定义一个 getArea() 计算面积的方法 (5) 定义一个 getPerimeter(),计算周长的方法 (6) 定义一个 draw()方法,使用海龟绘图绘制出这个
Python_对象(实例对象与类对象) 下方代码关实例对象与类对象相关实例创建与调用:class Student: #定义类对象 count = 0 #定义类属性 company = 'Tecent' def __init__(self,name,score): #构造函数 self.name = name #定义实例属性 self.score = score
Python_函数_实战 1.a = input('请输入想要逆转的数:')def reverse(m): print(m[::-1]) #反向读取字符串reverse(a)2.#编写函数计算数列:def factorial(n): if n == 1: return 1/2 else: return n/(n+1)+factorial(n-1)a = int(input('请输入数字n:'))print(factorial(a))...
Python_函数(浅拷贝与深拷贝测试) 简而言之,浅拷贝指只拷贝父对象。而深拷贝指既拷贝父对象,又拷贝全部子对象。具体测试如下:1.浅拷贝#测试浅拷贝import copydef testCopy(): a = [1,2,[3,4]] b = copy.copy(a) #浅拷贝 b.append(99) #修改b所拷贝的父对象,不影响a所指向的父对象 b[2].append(666) #修改b父对象所对应的子对象,会影响到a,因为两者共用想同子对象
Python_函数(局部变量和全局变量的效率测试) 验证局部变量使用效率高于全局变量:#局部变量和全局变量效率测试import mathimport timeb = math.sqrtdef test01(): start1 = time.time() for i in range(100000000): b(30) end1 = time.time() print(end1 - start1)def test02(): start2 = time.time() b = ma
Python_控制语句_实战 1.略2.# 输入一个学生的成绩,将其转化成简单描述:不及格(小于 60)、及格(60-79)、良好(80-89)、优秀(90-100)//优化:可重复添加成绩grades = ['优秀','良好','及格','不及格'] #录入成绩库while True: score = input('请输入学生成绩,输入q或Q退出') if score.upper() == 'Q': print('录入终止,退出...
Python_控制语句(循环结构性能优化测试) 测试在循环结构中将内循环语句放置到外循环的性能提升效果:import timeresult = []start = time.time()for m in range(1000): for n in range(10000): result.append(m*1000+n*100)end = time.time()print('耗时:',end - start)start2 = time.time()for m in range(1000): c =
Python_控制语句(嵌套循环案例) 1.打印九九乘法表经观察可确认由等式左侧的乘数作为两个循环变量。其次可发现当两个变量值相等时进行换行操作且左侧变量总是大于等于右侧变量:for m in range(1,10): #m表示乘法等式左边部分的第一个乘数 for n in range(1,m+1): #n表示乘法等式左边部分的第二个乘数,n总是小于等于m,所以到m+1 print('{0}*{1}={2}'.format(m,n,m * n),end = '.
Python_控制语句(选择结构_一类选择嵌套结构的优化) 案例:输入一个成绩0-100,90-100为A,80-89为B,70-79为C,60-69为D,小于60为E常规思路:多条件语句结构由上可见,if语句较多简化思路:通过字符串提取的优化score = int(input('請輸入0-100的分數'))degree = 'ABCDE'if score > 100 or score < 0: print('請認真讀題!并重新輸入')else: num = score // 10 if num &.
Python_序列_实战 1.2.a = [x*10 for x in range(3,9)]3. 0, 18, 36, 54, 72, 90, 108, 126, 144, 162, 180, 1984.a = [ ['高小一',18,30000,'北京'], ['高小二',19,20000,'上海'], ['高小五',20,10000,'深圳'],]for m in range(3): for n in range(4): print(a[m][...
Python_字符串简易小练习 1.(5+10*x)/5-13*(y-1)(a+b)/x+9*(5/x+(12+x)/y)2.a = int(input('Please input your monthly salary underneath:')) print('annual salary is {0}'.format(a*12))3.print('爱你一百遍'*100)4.a = 'to be or not to be' print(a[::-1])5.本题考察字符串驻留机制,格式包含字母、数字..
Python_序列(表格数据基础) r1 = {'name':'July','age':18,'salary':30000,'city':'Beijing'}r2 = {'name':'Kryser','age':19,'salary':20000,'city':'Chengdu'}r3 = {'name':'Lili','age':20,'salary':10000,'city':'Shanghai'}tb = [r1,r2,r3]#获得第二行人的薪资print(tb[1].get('salary'))print()#遍.
Python_字符串(字符串拼接:join() 与 +拼接符两种方法效率对比) #字符串拼接_join()和+的效率计算import timetime1 = time.time()a = ''for i in range(1000000): a += 'ypw'#依次新加字符串'ypw'time2 = time.time()print('运算时长:'+str(time2-time1))time3 = time.time()li = []for i in range(1000000): li.append('ypw')#依次在列表中加入字符串'yp.