ES的查询模式以及使用场景:

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/KuaiLeShiFu/article/details/52882364

ES的查询模式以及使用场景:
SearchType.DFS_QUERY_THEN_FETCH
QUERY_THEN_FETCH
DFS_QUERY_AND_FETCH
QUERY_AND_FETCH
SCAN
COUNT

(带then需要排序,带and不需要排序)

ES的数据遍历原理和深度分页
在 Elasticsearch 中,搜索一般包括两个阶段,query 和 fetch 阶段,可以简单的理解,query 阶段确定要取哪些doc,fetch 阶段取出具体的 doc;

Client 发送一次搜索请求,node1 接收到请求,然后,node1 创建一个大小为 from + size 的优先级队列用来存结果,我们管 node1 叫 coordinating node。
coordinating node将请求广播到涉及到的 shards,每个 shard 在内部执行搜索请求,然后,将结果存到内部的大小同样为 from + size 的优先级队列里,可以把优先级队列理解为一个包含 top N 结果的列表。
每个 shard 把暂存在自身优先级队列里的数据返回给 coordinating node,coordinating node 拿到各个 shards 返回的结果后对结果进行一次合并,产生一个全局的优先级队列,存到自身的优先级队列里。

可以把 scroll 理解为关系型数据库里的 cursor,因此,scroll 并不适合用来做实时搜索,而更适用于后台批处理任务,比如群发。

参考:
http://lxwei.github.io/posts/%E4%BD%BF%E7%94%A8scroll%E5%AE%9E%E7%8E%B0Elasticsearch%E6%95%B0%E6%8D%AE%E9%81%8D%E5%8E%86%E5%92%8C%E6%B7%B1%E5%BA%A6%E5%88%86%E9%A1%B5.html

展开阅读全文

没有更多推荐了,返回首页