基于深度学习的MVS学习笔记(05.04-05.07)

1. MVS方法与分类

1.1 问题界定:多目和单目双目

  • 单目深度估计:拟合一个函数将图像【RGB输入】映射到深度图【浮点输出】
  • 双目深度估计:双目回归视差,可以进一步求像素距离相机光心的深度
  • 多视点三维重建
    • 单目只能找到“相对的”相对关系
    • 双目理论上可以获取深度,但不同视角下深度可能不一致
    • 多目可以综合考虑,交叉验证

在特征提取上可以参考单目方法,在特征匹配和聚合上可以参考双目方法

1.2 MVS重建方法分类

方法缺点
直接点云重建 point cloud based一般采用点云传播的方式逐步让模型变得稠密难以并行化,重建时间长
基于体素的方法 volumetric based将3D空间划分为体素,在全局坐标系下判断每个体素的占用,能很好的通过正则化并行化。一般采用divide-and-conquer或八叉树等进行高分辨率重建由于内存消耗,一般只能处理小分辨率的场景
基于深度图融合 depth map fusion based将MVS问题解耦为逐视点的深度估计+最终融合所有视点图得到3D模型对于大基线角度和遮挡区域由于几何一致性会导致较差的质量

大基线角度:拍摄角度变换太大导致两张图差别很大

2. MVS流程

2.1 前序步骤:SfM

SfM 从运动中恢复结构【从图片中恢复/得到稀疏的点云+相机的参数】

2.2 核心问题建模:平面扫描算法

Plane Sweeping平面扫描【得到深度图】

  • 将空间划分成不同的深度假设平面,选择最好的深度假设平面 -> 恢复丢失的深度

  • 在物体表面的点,不同相机看到的应该是一样的(在物体上) -> 某种特征&某种度量

  • 由于SfM求得了相机参数,因此可以相互投影(Homograpy) -> 深度统一

2.3 后续步骤:深度图滤波与融合

已经估计出深度图,进行滤波和融合

像素点P,像素点P对应的深度D§,将参考视角下的P投影到源视角得到P’ -D(P‘),投影到很多源视角下

  • P和P‘距离比较进【像素点】
  • D§和D(P‘)距离比较近【深度图】
  • 至少在N个视点上满足,则认可这个点

这就是几何一致性滤波

另外常见的光度一致性滤波

得到过滤后的深度图就可以进行融合,目前关于融合方面的工作比较成熟

3. 基于深度学习的MVS方法

3.1 数据集介绍

DTU:用于训练和测试

针对MVS专门拍摄处理的高精度室内物体数据集,利用可调节照明的ABB机械臂进行多视点拍摄

  • 由124个不同场景组成
  • 每个物体共拍摄49个不同的视角
  • 每个视角共有7种不同的亮度
  • 每张图像分辨率为1600x1200

Tanks and Temples:用于泛化测试

大型室外场景数据集

  • 光照变化大
  • GT使用工业激光扫描仪获得
  • 场景存在大规模光照变化
  • 不能进行训练

BlendedMVS:用于finetune

  • 由113个场景组成
  • 覆盖小尺度和大尺度场景
  • 高精度合成数据

ETH3D:用于大规模重建

  • 包含25个高分辨率场景和10个低分辨率场景
  • 视点数量和分辨率非常庞大
  • 存在很多大面积弱纹理和遮挡区域
  • 一般作为传统方法的benchmark

3.2 评估指标介绍

准确率

召回率/完整性

3.3 MVSNet系列论文列表

代码仓库

https://github.com/waisvid/Awesome-MVS

基于深度学习:https://github.com/XYZ-qiyh/Awesome-Learning-MVS

4. 代码中的数据维度【以MVSNet处理为例】

  • B:batch_size
    • 在研究数据维度的时候可以直接将这个维度去掉
  • C:图像特征维度
    • 最开始是3-channels,后来通过特征提取网络变成32维
  • D/Ndepth:深度假设维度
    • 这里是192个不同的深度假设
  • H:图像高度
    • 原始是640,经过特征提取网络下采样了四倍,变成160
  • W:图像宽度
    • 同上,512-》128

MVSNet源码解析

train.py中最重要的fun就是train_sample

def train_sample(sample, detailed_summary=False):
    model.train()
    optimizer.zero_grad()

    sample_cuda = tocuda(sample)
    depth_gt = sample_cuda["depth"] # 深度图GT
    """
    depth_visual_00xx.png:还有49张深度图的png版本被用作mask
    二值图,值为1的像素是深度可靠点,后续训练只计算这些点的loss
    """
    mask = sample_cuda["mask"] # 指出哪些地方不用计算loss

    outputs = model(sample_cuda["imgs"], sample_cuda["proj_matrices"], sample_cuda["depth_values"])
    depth_est = outputs["depth"] # MVSNet得到的深度估计图

    loss = model_loss(depth_est, depth_gt, mask) # 在mask控制下计算估计深度图和GT的loss
    loss.backward()
    optimizer.step()

    scalar_outputs = {"loss": loss}
    image_outputs = {"depth_est": visualize_depth(depth_est * mask),  # 深度图估计
                     "depth_gt": sample["depth"],
                     "ref_img": sample["imgs"][:, 0],
                     "mask": sample["mask"]}
    
    if detailed_summary:
        image_outputs["errormap"] = (depth_est - depth_gt).abs() * mask
        # 更关注2mm和4mm的误差
        scalar_outputs["abs_depth_error"] = AbsDepthError_metrics(depth_est, depth_gt, mask > 0.5)
        scalar_outputs["thres2mm_error"] = Thres_metrics(depth_est, depth_gt, mask > 0.5, 2)
        scalar_outputs["thres4mm_error"] = Thres_metrics(depth_est, depth_gt, mask > 0.5, 4)
        scalar_outputs["thres8mm_error"] = Thres_metrics(depth_est, depth_gt, mask > 0.5, 8)

    return tensor2float(loss), tensor2float(scalar_outputs), image_outputs
class MVSNet(nn.Module):
    def __init__(self, refine=True):
        super(MVSNet, self).__init__()
        self.refine = refine

        self.feature = FeatureNet()
        self.cost_regularization = CostRegNet()
        if self.refine:
            self.refine_network = RefineNet()

    def forward(self, imgs, proj_matrices, depth_values):
        imgs = torch.unbind(imgs, 1)
        proj_matrices = torch.unbind(proj_matrices, 1)
        assert len(imgs) == len(proj_matrices), "Different number of images and projection matrices"
        img_height, img_width = imgs[0].shape[2], imgs[0].shape[3]
        num_depth = depth_values.shape[1]
        num_views = len(imgs)

        # step 1. feature extraction
        # in: images; out: 32-channel feature maps
        features = [self.feature(img) for img in imgs] # 会跑3次, 1张ref,两张src
        ref_feature, src_features = features[0], features[1:] # 每个特征图都是 [B, 32, H/4, W/4]
        ref_proj, src_projs = proj_matrices[0], proj_matrices[1:]

        # step 2. differentiable homograph, build cost volume
        # 把上面三个特征都投影到ref视点的锥体上,同时做一个方差聚合
        ref_volume = ref_feature.unsqueeze(2).repeat(1, 1, num_depth, 1, 1) # [B, 32, 192,H/4, W/4]
        volume_sum = ref_volume # 便于后面计算平均
        volume_sq_sum = ref_volume ** 2 # 便于后面计算方差
        del ref_volume
        for src_fea, src_proj in zip(src_features, src_projs):
            # warpped features
            warped_volume = homo_warping(src_fea, src_proj, ref_proj, depth_values)
            if self.training:
                volume_sum = volume_sum + warped_volume
                volume_sq_sum = volume_sq_sum + warped_volume ** 2
            else: # 测试模式【分辨率率很大,要节省内存】
                # TODO: this is only a temporal solution to save memory, better way?
                volume_sum += warped_volume
                volume_sq_sum += warped_volume.pow_(2)  # the memory of warped_volume has been modified
            del warped_volume

        # aggregate multiple feature volumes by variance 对应原文公式(2),计算方差
        volume_variance = volume_sq_sum.div_(num_views).sub_(volume_sum.div_(num_views).pow_(2)) # [B, 32, 192, H/4, W/4]

        # step 3. cost volume regularization
        cost_reg = self.cost_regularization(volume_variance) # [B, 1, 192, H/4, W/4]
        # cost_reg = F.upsample(cost_reg, [num_depth * 4, img_height, img_width], mode='trilinear')
        cost_reg = cost_reg.squeeze(1) # [B, 192, H/4, W/4]
        prob_volume = F.softmax(cost_reg, dim=1) # [B, 192, H/4, W/4]
        depth = depth_regression(prob_volume, depth_values=depth_values) # [B, H/4, W/4] 加权平均选择最优的深度

        with torch.no_grad():
            # photometric confidence-从概率体中获得一个置信图,只用来做滤波
            prob_volume_sum4 = 4 * F.avg_pool3d(F.pad(prob_volume.unsqueeze(1), pad=(0, 0, 0, 0, 1, 2)), (4, 1, 1), stride=1, padding=0).squeeze(1) # 和周围4个加一下得到一个聚合概率值
            depth_index = depth_regression(prob_volume, depth_values=torch.arange(num_depth, device=prob_volume.device, dtype=torch.float)).long()
            photometric_confidence = torch.gather(prob_volume_sum4, 1, depth_index.unsqueeze(1)).squeeze(1)

        # step 4. depth map refinement
        if not self.refine:
            return {"depth": depth, "photometric_confidence": photometric_confidence}
        else:
            refined_depth = self.refine_network(torch.cat((imgs[0], depth), 1))
            return {"depth": depth, "refined_depth": refined_depth, "photometric_confidence": photometric_confidence}
  • 4
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于深度学习三维重建(Multi-View Stereo,MVS),最常用的方法之一是使用卷积神经网络(Convolutional Neural Networks,CNN)进行处理。MVS 是通过从多个视角的图像中恢复场景的三维几何形状。下面是一个使用深度学习进行 MVS 的基本步骤: 1. 数据准备:收集多个视角的图像,并估计它们之间的相机姿态。通常会使用结构光或者多视角立体摄影机等硬件设备来获取这些信息。 2. 特征提取:对每个图像进行特征提取,例如使用卷积神经网络(CNN)提取图像的特征表示。常用的网络架构包括 VGG、ResNet、或者用于图像配准的特定架构。 3. 匹配:在每个视角中,将图像特征与其他视角中的特征进行匹配,以找到对应的特征点。这可以通过计算特征之间的相似度,例如使用光流法或者局部特征描述子。 4. 深度估计:使用匹配的图像特征来估计每个像素点的深度值。这可以通过训练一个深度估计网络,将图像中每个像素处的特征输入网络,预测其深度值。 5. 高级优化:对估计的深度图进行后处理和优化,以提高重建结果的精度和稳定性。这可以包括平滑滤波、边缘保持、去除噪声等技术。 总体而言,深度学习在MVS中的应用可以显著提高重建的精度和效率,但也需要大量的训练数据和计算资源来实现。在实际应用中,还需要考虑场景复杂性、纹理信息和光照变化等因素,以获取更准确的三维重建结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值