深度学习
文章平均质量分 59
你不困我困
没关系,能睁开眼睛已经很厉害了
展开
-
锚框【Anchor frame】
IoU用来计算两个框之间的相似度。NMS可以合并相似的预测。一类目标检测算法是基于。每个锚框预测一个边缘框。原创 2023-12-04 15:43:31 · 562 阅读 · 0 评论 -
目标/物体检测
目标/物体检测:识别图片里的多个物体的类别和位置位置通常用边缘框表示:一个边缘框可以通过4个数字定义。原创 2023-12-01 16:54:13 · 607 阅读 · 0 评论 -
微调Fine tune
网络架构一个神经网络一般可以分为两块微调:使用之前已经训练好的特征抽取模块来直接使用到现有模型上,而对于线性分类器由于标号可能发生改变而不能直接使用训练是一个目标数据集上的正常训练任务,但使用更强的正则化重用分类器权重固定一些层神经网络通常学习有层次的特征表示微调通过使用在大数据上得到的预训练好的模型来初始化模型权重来完成提升精度预训练模型质量很重要微调通常速度更快,精度更好。原创 2023-11-30 20:18:45 · 523 阅读 · 0 评论 -
数据增广【以图像增广为例】
数据增广/增强: 对一个已有数据集中的数据进行变换,使其有更多的多样性。数据增广通过通过变形数据来获得多样性从而使得模型的泛化性能更好增强数据一般在线随机生成,主要用在训练过程中。从结果向前推可能会出现的结果,然后对图片进行处理。原创 2023-11-30 20:05:15 · 598 阅读 · 0 评论 -
多GPU训练的实现
使用多个GPU可以将模型的参数和训练数据分配到不同的GPU上并行处理,从而显著提高训练速度。每个GPU都可以处理一部分数据,同时进行反向传播和参数更新,使得整个训练过程更加高效。: 多GPU训练使得可以处理更大的模型和数据集,因为每个GPU都可以专注于处理部分模型参数和数据。这对于深度学习中复杂模型和大规模数据集的训练非常有益。: 利用多个GPU可以更充分地利用计算资源。在单个GPU上,可能存在计算资源的浪费,而多GPU训练可以更有效地利用这些资源。: 多GPU训练还有助于提高实验迭代速度。原创 2023-11-20 17:19:32 · 334 阅读 · 0 评论 -
【论文精读1】MVSNet架构各组织详解
提取N个输入图像的深层特征用作深度匹配与传统三维重建方法类似,第一步是提取图像特征(SIFT等特征子),不同点在于本文使用8层的卷积网络从图像当中提取更深层的图像特征表示,网络结构如下图所示:输入:N张3通道的图像,宽高为W,H输出:N组32通道图,每通道尺度为H/4,W/4虽然特征提取后图像帧缩小,但每个剩余像素的原始相邻信息已经被编码到32通道像素描述符中,防止了密集匹配丢失有用的上下文信息。【就是尺寸变小但是通道数增加,不同的通道可以保存更多有用的信息】将提取的特征图和输入图建立一个3D成本体积(之原创 2023-10-30 01:20:59 · 693 阅读 · 0 评论 -
Anaconda/minAnaconda下配置虚拟环境并安装pytorch相关
安装PyTorch,需要安装pytorch, torchvision,torchaudio三个包。直接看警告的地方提供的最新版本的conda,可以使用以下命令直接更新,但我没解决。Anaconda/minAnaconda下配置虚拟环境并安装pytorch相关。输入 conda list,查看是否存在pytorch 或者torch。输入 torch.cuda.is_available()激活对应的虚拟环境(安装Pytorch的虚拟环境)如果显示为True,就说明Pytorch安装成功了。原创 2023-10-25 16:58:07 · 216 阅读 · 0 评论 -
一些经典的神经网络(第22天)ending
常见神经网络相关和代码实现原创 2023-10-18 21:17:11 · 1695 阅读 · 6 评论 -
从基础到卷积神经网络(第16天)
从入门到入土原创 2023-10-13 23:56:18 · 716 阅读 · 0 评论 -
深度学习-房价预测案例
【.fillna(0)对选择的数值型特征进行了填充操作,将缺失值(NaN值)填充为0。fillna()是一个DataFrame对象的方法,用于填充缺失值】【torch.clamp()函数会将输出结果中小于下界的值替换为下界,将大于上界的值替换为上界,因此它可以用来对输出结果进行范围限制】【使用iloc属性对train_data这个DataFrame对象进行切片操作,选取了指定行和列的数据子集】.reshape(-1, 1)改变数组的形状,将其变为一个列向量(具有一列)。原创 2023-10-11 21:31:27 · 323 阅读 · 0 评论 -
Jupyter 报错:can‘t convert np.ndarray of type numpy.object_.
解决方案:使用.astype(“float64”)强制转化。原创 2023-09-24 00:43:21 · 663 阅读 · 0 评论 -
[winerror 5] 拒绝访问。: ‘..\\data‘解决方案
使用Jupyter Notebook学习深度学习时出现错误如下:[winerror 5] 拒绝访问。点编辑,选择User,勾选如下图所示权限,选择应用,然后确定。打开anaconda3找到python.exe。原创 2023-09-23 22:25:42 · 2266 阅读 · 2 评论 -
深度学习从入门到基础(第11天结束)
N维数组样例N维数组是机器学习和神经网络的主要数据结构0-d一个类别: 1.01-d一个特征向量(一维矩阵):[1.0, 2.7, 3.4]2-d一个样本-特征矩阵-(二维矩阵)3-dRGB图片 (宽x高x通道)- 三维数组4-d一个RGB图片批量(批量大小x宽x高x通道)5-d一个视频批量(批量大小x时间x宽x高x通道)访问元素。原创 2023-09-22 22:30:22 · 521 阅读 · 0 评论 -
安装Jupyter可能会出现的问题
安装Jupyter可能会出现的问题。原创 2023-09-22 18:00:33 · 411 阅读 · 0 评论 -
优化器的使用
造成损失参数不降反升,是lr设置过大。结果示例:每轮的损失参数不断减小。调整lr=0.001。原创 2023-09-16 17:34:46 · 335 阅读 · 0 评论 -
神经网络入门(完结版)
神经网络的基本骨架。原创 2023-09-01 22:54:52 · 639 阅读 · 0 评论 -
DataLoader的使用
设置drop_last=False 结果,最后一步不足64张任然进行了保留。最后一步不足64张进行了舍去,所以只有155步。设置drop_last=True后。原创 2023-08-31 19:52:26 · 549 阅读 · 0 评论 -
torchvision中数据集的使用
第一步:下载数据集到本地,可以下载到同路径目录下(非常慢,可以直接复制链接(不显示路径可以ctrl进源代码查看,一般都会有)进迅雷下载,下载好将其复制到同名目录下运行过程中会自动解压)查看数据集中的数据,可以添加断点查看。在tensorboard中显示图片。原创 2023-08-31 00:49:10 · 283 阅读 · 0 评论 -
Transforms的使用
transforms主要是对图片进行变换。原创 2023-08-28 22:10:17 · 258 阅读 · 0 评论 -
TensorBoard的使用
TensorBoard:对图像进行变换。原创 2023-08-28 00:26:08 · 381 阅读 · 0 评论 -
Dataset类实践
Dataset类实践蚂蚁蜜蜂分类数据集和下载链接https://download.pytorch.org/tutorial/hymenoptera_data.zipDataset:提供一种方式去获取数据及其lableQ:如何获取每个数据及其lable重写构造方法和获取标签方法Q:告诉我们总共有多少数据重写len方法在控制台中进行测试。原创 2023-08-26 16:43:10 · 253 阅读 · 0 评论