DTU数据集结构

本文介绍了DTU数据集的结构,包括用于训练和评估的128个扫描,详细的分组(train,val,test),相机参数、深度图真值以及不同光照条件下的rectified图像。此外,还提及了点云GT用于定量测试的评测指标。
摘要由CSDN通过智能技术生成

DTU 训练和测试集

用于训练,评估,测试

主要有128个scan,train:79个,val:18个,test:22个

  • Cameras:相机参数
  • Depths:深度图真值GT
  • Depths_raw:全分辨率的深度图真值GT
  • Rectified:原始图像(640*512)
  • Recified_raw:全分辨率的原始图像(1600*1200)

Cameras

  • pari.txt :只有一个,每个scan通用的

    • 每个场景49个view的配对方式
  • train/xxxxx_cam.txt:49个,每个视角有一个相机参数

    • 不同的scan是一致的

    • 相机外参,相机内参,最小深度(425mm),深度假设间隔

      DTU深度范围:425~935mm

Depths

  • depth_map_00xx.pfm:每个scan文件夹里49个视角的深度图(深度以mm为单位)
  • depth_visual_00xx.png:还有49张深度图的png版本被用作mask
    • 二值图,值为1的像素是深度可靠点,后续训练只计算这些点的loss

Rectified

  • 每个scan文件夹里有49个视角*7种光照 = 343张图片

  • 命名:

    rect_[view视点]_[light光照强度]_r5000.png
    
  • 图片尺寸:640*512

DTU点云GT

用于定量测试时的评测

  • ObsMask:.mat文件保存点云真值相关指标
  • Points:点云真值GT
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值