内容来自leetcode,用python 完成
1.颠倒二进制位
题目要求
颠倒给定的 32 位无符号整数的二进制位。
示例 1:
输入:n = 00000010100101000001111010011100
输出:964176192 (00111001011110000010100101000000)
解释:输入的二进制串 00000010100101000001111010011100 表示无符号整数 43261596,
因此返回 964176192,其二进制表示形式为 00111001011110000010100101000000。
思路
和把十进制的数颠倒的思路类似,只不过二进制的移动采用的是位运算符
class Solution:
def reverseBits(self, n: int) -> int:
reverse = 0
count = 0
while n != 0 :
if n&1:
reverse = reverse | 1
count +=1
if count !=32:
reverse = reverse << 1
n = n>>1
if count < 31:
reverse = reverse << (31-count)
return reverse
虽然不难,但是写的时候还是遇到了一些问题,比如光写个n>>1,没有赋值。。。还有就是最后得到的位数,容易多移。
官方给出了位运算分治的解决方案
若要翻转一个二进制串,可以将其均分成左右两部分,对每部分递归执行翻转操作,然后将左半部分拼在右半部分的后面,即完成了翻转。
由于左右两部分的计算方式是相似的,利用位掩码和位移运算,我们可以自底向上地完成这一分治流程。
class Solution:
M32 = 0xffffffff # 1*32
M1 = 0x55555555 # ...0101010101010101
M2 = 0x33333333 # ...0011001100110011
M4 = 0x0f0f0f0f # ...0000111100001111
M8 = 0x00ff00ff # ...0000000011111111
def reverseBits(self, n: int) -> int:
# print(format(n, 'b').zfill(32))
n = ((n & self.M1) << 1) & self.M32 | ((n >> 1) & self.M1)
n = ((n & self.M2) << 2) & self.M32 | ((n >> 2) & self.M2)
n = ((n & self.M4) << 4) & self.M32 | ((n >> 4) & self.M4)
n = ((n & self.M8) << 8) & self.M32 | ((n >> 8) & self.M8)
n = (n << 16) & self.M32 | (n >> 16)
return n
2.杨辉三角
题目要求
给定一个非负整数 numRows
,生成「杨辉三角」的前 numRows
行。
在「杨辉三角」中,每个数是它左上方和右上方的数的和。
示例 1:
输入: numRows = 5 输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
思路
首和尾都保持1不变,中间的元素为上一行的元素两两相加。感觉略微麻烦一点就是Python本身没得二维数组,只能通过向列表增加另一个列表的形式实现。
class Solution:
def generate(self, numRows: int) -> List[List[int]]:
yang = [[1]]
if numRows == 1:
return yang
for i in range(numRows-1):
if i == 0:
addlist = [1,1]
yang.append(addlist)
else:
orilist = yang[i]
addlist = [1]
for i in range(len(orilist)-1):
addlist.append(orilist[i]+orilist[i+1])
addlist.append(1)
yang.append(addlist)
return yang
官方的解法提醒了我。。。虽然不能声明二维,但是可以以二维的办法读取。。。
class Solution:
def generate(self, numRows: int) -> List[List[int]]:
ret = list()
for i in range(numRows):
row = list()
for j in range(0, i + 1):
if j == 0 or j == i:
row.append(1)
else:
row.append(ret[i - 1][j] + ret[i - 1][j - 1])
ret.append(row)
return ret