内容来自leetcode
1.有效的数独
题目要求
请你判断一个 9 x 9 的数独是否有效。只需要 根据以下规则 ,验证已经填入的数字是否有效即可。
数字 1-9 在每一行只能出现一次。
数字 1-9 在每一列只能出现一次。
数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)
注意:
一个有效的数独(部分已被填充)不一定是可解的。
只需要根据以上规则,验证已经填入的数字是否有效即可。
空白格用 '.' 表示。
输入:board =
[["5","3",".",".","7",".",".",".","."]
,["6",".",".","1","9","5",".",".","."]
,[".","9","8",".",".",".",".","6","."]
,["8",".",".",".","6",".",".",".","3"]
,["4",".",".","8",".","3",".",".","1"]
,["7",".",".",".","2",".",".",".","6"]
,[".","6",".",".",".",".","2","8","."]
,[".",".",".","4","1","9",".",".","5"]
,[".",".",".",".","8",".",".","7","9"]]
输出:true
思路
判断的条件很简单,其实就是行、列和九宫格进行判断。起初考虑到python写多维数组比较麻烦,就打算分别用行列循环和列行循环来分别对列和行进行判断,当然也确实是可行的。但是到了九宫格判断时一时间没想出来如何遍历,看了官方给出的解答是用三维数组来实现的。那也就只能先用三维数组来完成,但是程序写完之后无法通过,有的九宫格无法正确判断,检查后发现是列表的声明问题。开始是这样声明的:
subbox = [[[0]*9]*3]*3
这样确实能够生成一个表示三维数组的列表,但是问题在于子列表间并非独立存在,导致判断出现问题。
学习了一下后发现这样声明就没问题了
subbox = [[[0 for i in range(9)]for i in range(3)]for i in range(3)]
class Solution:
def isValidSudoku(self, board: List[List[str]]) -> bool:
#check_row = [0] * 9
#行判断
for line in board:
check_line = [0] * 9
for cha in line:
if cha != '.':
check_line[int(cha)-1] += 1
if check_line[int(cha)-1] > 1:
return False
#列判断&九宫格
subbox = [[[0 for i in range(9)]for i in range(3)]for i in range(3)]
for j in range(0,9):
check_row = [0] * 9
for i in range(0,9):
#check_row = [0] * 9
if board[i][j] != '.':
check_row[int(board[i][j])-1] += 1
if check_row[int(board[i][j])-1] > 1:
return False
subbox[i//3][j//3][int(board[i][j])-1] +=1
if subbox[i//3][j//3][int(board[i][j])-1] >1:
return False
return True
在掌握了如何构建列表来表示多维数组后,可以将程序简化。
class Solution:
def isValidSudoku(self, board: List[List[str]]) -> bool:
check_line = [[0 for i in range(9)]for i in range(9)]
check_row = [[0 for i in range(9)]for i in range(9)]
subbox = [[[0 for i in range(9)]for i in range(3)]for i in range(3)]
for j in range(0,9):
for i in range(0,9):
if board[i][j] != '.':
check_row[i][int(board[i][j])-1] +=1
subbox[i//3][j//3][int(board[i][j])-1] +=1
check_line[j][int(board[i][j])-1] +=1
if check_row[i][int(board[i][j])-1] > 1 or subbox[i//3][j//3][int(board[i][j])-1] >1 or check_line[j][int(board[i][j])-1] > 1:
return False
return True
本来以为第一种的内存消耗小但时间长,第二种内存消耗大但是时间短。实际运行来看其实差不多。
有大哥用位运算进行了实现,C++版本:
class Solution {
public:
bool isValidSudoku(vector<vector<char>>& board) {
vector<int>
rowValidation = vector<int>(9, 0),
colValidation = vector<int>(9, 0),
blockValidation = vector<int>(9, 0);
for (int i = 0; i < 9; ++i) {
for (int j = 0; j < 9; ++j) {
if (board[i][j] != '.') {
int x = (1 << (board[i][j] - '1'));
// 行校验
if (rowValidation[i] & x) {
return false;
}
else {
rowValidation[i] |= x;
}
// 列校验
if (colValidation[j] & x) {
return false;
}
else {
colValidation[j] |= x;
}
// 宫内校验
if (blockValidation[j/3*3+i/3] & x) {
return false;
}
else {
blockValidation[j/3*3+i/3] |= x;
}
}
}
}
return true;
}
};