19081 树上摘樱桃(★)

19081 树上摘樱桃(★)

Description
网易2021校招笔试-算法工程师(正式第一批)

有一棵二叉树,树上的叶子节点定义为“樱桃”。现在需要找出树上有多少个满足如下子结构的“樱桃”串,即一串上刚好有两颗“樱桃”。
简单说,就是某个节点的左右孩子都是叶子节点,即为一个串。
比如如下的一棵树,红框标示的有两个符合要求的结构,答案就是2
在这里插入图片描述
输入格式
第一行两个正整数m, n,空格分开,分别代表总共有树上有多少个节点,和树上有多少条边,2<=m<=100, 1<=n<=100
下面有n行,每行为3个部分,用空格分割,第一个数字为某非叶子节点的id,
第二个为该边为left还是right,第三个为子节点的id
注意:节点id彼此不会重复,id 1为根节点

输出格式
一个整数,标示符合要求的结构的数量。

输入样例
10 9
1 left 2
1 right 3
2 left 4
2 right 5
3 right 6
6 left 7
6 right 8
8 left 9
8 right 10

输出样例
2

提示
如题目说明的第一个样例图,可以看到,2-4-5子串,8-9-10子串,两个子串符合条件,所以答案为2

思路:
主要是判断结点是否有左右叶子孩子,即(!root->left->left && !root->left->right && !root->right->left && !root->right->right)
构造Node结构体(指针要用“->”!!)

#include <iostream>
#include <string>
#include <string.h>
#include <vector>
using namespace std;

struct Node
{
public:
     Node *left = NULL;
     Node *right = NULL;
};
//递归
int Cherry(Node* root){
    if(!root) return 0;
    if(!root->left)  return Cherry(root->right);//左子树不存在,遍历右子树
    if(!root->right) return Cherry(root->left);//右子树不存在,遍历左子树

    //出口:判断是否是樱桃串
    if(!root->left->left && !root->left->right && !root->right->left && !root->right->right )
    //结点的左孩子是叶子 && 右孩子是叶子,是樱桃串
        return 1;
    //返回继续判断左子树和右子树
    return Cherry(root->left) + Cherry(root->right);
}

int main()
{
    ios::sync_with_stdio(false);
    int m,n;
    cin >> m >>n;
    用vector里的index表示id,因为id从1开始,所以size为m+1
    vector<Node*> a(m + 1);//存放结点
    int id,child;
    string pos;//位置
    //m个结点
    for(int i = 1;i < m + 1;i++){
        a[i] = new Node();//a[i]结点
    }
    //n条边
    for(int i = 1;i <= n;i++){
        cin >> id >> pos >> child;
        //只用判断字符串第一个字符
        if(pos[0] == 'l'){
            a[id]->left = a[child]; //第id结点的左孩子
        }
        else if(pos[0] == 'r'){
            a[id]->right = a[child];
        }
    }

    cout << Cherry(a[1]);//从第一个结点开始递归
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值