19081 树上摘樱桃(★)
Description
网易2021校招笔试-算法工程师(正式第一批)
有一棵二叉树,树上的叶子节点定义为“樱桃”。现在需要找出树上有多少个满足如下子结构的“樱桃”串,即一串上刚好有两颗“樱桃”。
简单说,就是某个节点的左右孩子都是叶子节点,即为一个串。
比如如下的一棵树,红框标示的有两个符合要求的结构,答案就是2
输入格式
第一行两个正整数m, n,空格分开,分别代表总共有树上有多少个节点,和树上有多少条边,2<=m<=100, 1<=n<=100
下面有n行,每行为3个部分,用空格分割,第一个数字为某非叶子节点的id,
第二个为该边为left还是right,第三个为子节点的id
注意:节点id彼此不会重复,id 1为根节点
输出格式
一个整数,标示符合要求的结构的数量。
输入样例
10 9
1 left 2
1 right 3
2 left 4
2 right 5
3 right 6
6 left 7
6 right 8
8 left 9
8 right 10
输出样例
2
提示
如题目说明的第一个样例图,可以看到,2-4-5子串,8-9-10子串,两个子串符合条件,所以答案为2
思路:
主要是判断结点是否有左右叶子孩子,即(!root->left->left && !root->left->right && !root->right->left && !root->right->right)
构造Node结构体(指针要用“->”!!)
#include <iostream>
#include <string>
#include <string.h>
#include <vector>
using namespace std;
struct Node
{
public:
Node *left = NULL;
Node *right = NULL;
};
//递归
int Cherry(Node* root){
if(!root) return 0;
if(!root->left) return Cherry(root->right);//左子树不存在,遍历右子树
if(!root->right) return Cherry(root->left);//右子树不存在,遍历左子树
//出口:判断是否是樱桃串
if(!root->left->left && !root->left->right && !root->right->left && !root->right->right )
//结点的左孩子是叶子 && 右孩子是叶子,是樱桃串
return 1;
//返回继续判断左子树和右子树
return Cherry(root->left) + Cherry(root->right);
}
int main()
{
ios::sync_with_stdio(false);
int m,n;
cin >> m >>n;
用vector里的index表示id,因为id从1开始,所以size为m+1
vector<Node*> a(m + 1);//存放结点
int id,child;
string pos;//位置
//m个结点
for(int i = 1;i < m + 1;i++){
a[i] = new Node();//a[i]结点
}
//n条边
for(int i = 1;i <= n;i++){
cin >> id >> pos >> child;
//只用判断字符串第一个字符
if(pos[0] == 'l'){
a[id]->left = a[child]; //第id结点的左孩子
}
else if(pos[0] == 'r'){
a[id]->right = a[child];
}
}
cout << Cherry(a[1]);//从第一个结点开始递归
return 0;
}