秋叶大佬sd整合包,运行Reactor或者WD 1.4 标签器(包括其他依赖onnxruntime的插件,如:ControlNet插件的部分预处理器)就存在模型运行报错的问题,解决方法:
1、在绘世启动器的“高级”选项卡中,右上角找到"启动命令提示符",进入命令行模式:
[SD-Launcher] Z:\aigc\sd-forge-aki>
2、查询已经安装的版本(可跳过)
python\Scripts\pip show onnxruntime-gpu
如果安装过,就会显示如下信息:
Version: 1.17.1
Summary: ONNX Runtime is a runtime accelerator for Machine Learning models
Home-page: https://onnxruntime.ai
Author: Microsoft Corporation
Author-email: onnxruntime@microsoft.com
License: MIT License
Location: Z:\aigc\sd-forge-aki\python\Lib\site-packages
Requires: coloredlogs, flatbuffers, numpy, packaging, protobuf, sympy
Required-by:
3、删除旧版本,安装新版可执行命令:
python .\python\Scripts\pip.exe uninstall onnxruntime-gpu
python .\python\Scripts\pip.exe install keyring artifacts-keyring
python .\python\Scripts\pip.exe install onnxruntime-gpu --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/
建议在科学上网的环境运行,无法安装可以想办法下载.whl的包,然后运行:
python .\python\Scripts\pip.exe install onnxruntime_gpu-1.xx.x-cp3xx-cp3xx-win_amd64.whl
下载地址:https://github.com/microsoft/onnxruntime/tags
文件名改为你下载的.whl包的位置即可。(下载的版本需要根据自己的环境情况,文后提供表格)
系统提示:
Installing collected packages: onnxruntime-gpu
Successfully installed onnxruntime-gpu-1.xx.x
则表示安装成功。重新启动服务就可以正常使用了。
补充:特别提示
需要根据自己的CUDA和cuDNN版本选择相应的版本,只有onnxruntime 1.17版本同时支持CUDA11和12,具体支持情况还与cuDNN的版本有关,因此需要查询官方表格来确定。https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html
再有之前有朋友私信我,多数问题是CUDA,cuDNN安装的问题,以及系统PATH变量设置的问题等。可以通过在前边的命令行窗口运行:
where nvcc #查询cuda的位置
set | grep CUDA #查询系统变量的CUDA设置
最后,就是cuDNN最好直接覆盖在CUDA的安装目录里,不然还需要额外添加到系统变量。