01-背包问题

0-1 背包问题:给定 n 种物品和一个容量为 C 的背包,物品 i 的重量是 wi,其价值为 vi 。

问:应该如何选择装入背包的物品,使得装入背包中的物品的总价值最大?


分析一波,面对每个物品,我们只有选择拿取或者不拿两种选择,不能选择装入某物品的一部分,也不能装入同一物品多次。


解决办法:声明一个 大小为  m[n][c] 的二维数组,m[ i ][ j ] 表示 在面对第 i 件物品,且背包容量为  j 时所能获得的最大价值 ,那么我们可以很容易分析得出 m[i][j] 的计算方法,

(1). j < w[i] 的情况,这时候背包容量不足以放下第 i 件物品,只能选择不拿

m[ i ][ j ] = m[ i-1 ][ j ]

(2). j>=w[i] 的情况,这时背包容量可以放下第 i 件物品,我们就要考虑拿这件物品是否能获取更大的价值。

如果拿取,m[ i ][ j ]=m[ i-1 ][ j-w[ i ] ] + v[ i ]。 这里的m[ i-1 ][ j-w[ i ] ]指的就是考虑了i-1件物品,背包容量为j-w[i]时的最大价值,也是相当于为第i件物品腾出了w[i]的空间。

如果不拿,m[ i ][ j ] = m[ i-1 ][ j ] , 同(1)

究竟是拿还是不拿,自然是比较这两种情况那种价值最大。



例:0-1背包问题。在使用动态规划算法求解0-1背包问题时,使用二维数组m[i][j]存储背包剩余容量为j,可选物品为i、i+1、……、n时0-1背包问题的最优值。绘制

价值数组v = {8, 10, 6, 3, 7, 2},

重量数组w = {4, 6, 2, 2, 5, 1},

背包容量C = 12时对应的m[i][j]数组。


0123456789101112
1000888888888
20008810101010181818
30668814141616181824
40669914141717191924
50669914141717192124
626891114161719192124

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int f[1000][1000];
int main()
{
    int m,n;//m 背包容量;待装物品数量;
    int w[100],p[100];
    scanf("%d%d",&m,&n);
    for( int i=1; i<=n; i++)
    {
        scanf("%d%d",&w[i],&p[i]);
    }
    memset(f,0,sizeof(f));
    for( int i=1; i<=n; i++)
    {
        for( int j=1; j<=m; j++)
        {
            if( j>=w[i] )
            {
                f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+p[i]);
                /*if( f[i-1][j]>f[i-1][j-w[i]]+p[i] )
                f[i][j] = f[i-1][j];
                else
                {
                    f[i][j] = f[i-1][j-w[i]]+p[i];
                }*/
            }else
            f[i][j]=f[i-1][j];
        }
    }
    printf("%d\n",f[n][m]);
    return 0;
}:




阅读更多
上一篇zcmu.oj-1293: 2^x mod n = 1
下一篇zcmu.oj-1097 求余
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭