拉格朗日(Lagrange)插值算法

多项式除法

image.png

image.png
假定平面上有**A(1,-1) ,B(2,9),C(3,25)求出最低次多项式f(x)经过这些点,前面我们讲过牛顿插值,现在我们不用这个方法。想要经过这些点,那么当满足某些条件时,
我们假设有三个函数
f1(x) , f2(x), f3(x)**满足以下关系

image.png

已知有给定的k + 1个取值点:(x0,y0), … ,(xk,yk

假设任意两个不同的xj都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式

image.png

image.png

练习:

image.png

参考:https://zh.wikipedia.org/wiki/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5%E6%8F%92%E5%80%BC%E6%B3%95#cite_note-3

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
拉格朗日插值算法是一种常用的多项式插值方法,用于根据给定的一些数据点,通过一个多项式函数来逼近这些点的函数关系。在Python中,可以使用numpy库来实现拉格朗日插值算法。 下面是一个使用numpy库实现拉格朗日插值算法的示例代码: ```python import numpy as np def lagrange_interpolation(x, y, x_interpolate): """ 拉格朗日插值算法 :param x: 已知数据点的x坐标列表 :param y: 已知数据点的y坐标列表 :param x_interpolate: 需要插值的x坐标 :return: 插值结果 """ n = len(x) result = 0.0 for i in range(n): # 计算拉格朗日基函数的权重 w = 1.0 for j in range(n): if i != j: w *= (x_interpolate - x[j]) / (x[i] - x[j]) # 加权求和 result += w * y[i] return result # 示例使用 x = [1, 2, 3, 4] # 已知数据点的x坐标 y = [1, 4, 9, 16] # 已知数据点的y坐标 x_interpolate = 2.5 # 需要插值的x坐标 result = lagrange_interpolation(x, y, x_interpolate) print(f"The interpolation result at x = {x_interpolate} is {result}") ``` 在示例代码中,`lagrange_interpolation` 函数接受已知数据点的 x 坐标列表 `x`、y 坐标列表 `y` 和需要插值的 x 坐标 `x_interpolate`。函数内部使用嵌套循环计算拉格朗日基函数的权重并加权求和得到插值结果。 注意:拉格朗日插值算法的实现存在一些问题,例如当数据点数量较大时,计算量会非常大,同时插值结果也可能受到 Runge 现象的影响。因此,在实际应用中,可能会选择其他更高效或更稳定的插值算法

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值