复数基本概念

本文概述了复数域的基本定义,包括实部、虚部、共轭复数,以及复数的运算规则,如加减乘除和指数形式。深入讲解了复数的模与辐角、单位复数、欧拉公式,并展示了复数乘法与旋转的关系。还涉及复数的乘幂、方根和矩阵表示,揭示了它们在二维空间中的几何意义。
摘要由CSDN通过智能技术生成

复数域

z = x + i y 或 者 z = x + y i , i 2 = − 1 z=x+iy或者z=x+yi,i^2=-1 z=x+iyz=x+yi,i2=1

实数x与y分别称为复数z的实部和虚部,记作
x = R e z , y = I m z x=Re z,y=Im z x=Rez,y=Imz
虚部为零的复数就可以看作实数,虚部不为零的复数称为虚数
x + i y 和 x − i y 称 为 互 为 共 轭 复 数 x+iy和x-iy称为互为共轭复数 x+iyxiy
复数运算
z 1 ± z 2 = ( x 1 ± x 2 ) + i ( y 1 ± y 2 ) z 1 z 2 = ( x 1 + i y 1 ) ( x 2 + i y 2 ) = ( x 1 x 2 − y 1 y 2 ) + i ( x 1 y 2 + x 2 y 1 ) z 1 z 2 = x 1 + i y 1 x 2 + i y 2 = ( x 1 + i y 1 ) ( x 2 − i y 2 ) ( x 2 + i y 2 ) ( x 2 − i y 2 ) = ( x 1 x 2 + y 1 y 2 ) + i ( x 2 y 1 − x 1 y 2 ) x 2 2 + y 2 2 , z 2 ≠ 0 z_1\pm z_2=(x_1\pm x_2)+i(y_1\pm y_2)\\ z_1 z_2=(x_1+iy_1)(x_2+iy_2)=(x_1x_2-y_1y_2)+i(x_1y_2+x_2y_1)\\ \frac{z_1}{z_2}=\frac{x_1+iy_1}{x_2+iy_2}=\frac{(x_1+iy_1)(x_2-iy_2)}{(x_2+iy_2)(x_2-iy_2)}=\frac{(x_1x_2+y_1y_2) + i(x_2y_1-x_1y_2)}{x^{2}_{2}+y^{2}_{2}},z_2\neq0 z1±z2=(x1±x2)+i(y1±y2)z1z2=(x1+iy1)(x2+iy2)=(x1x2y1y2)+i(x1y2+x2y1)z2z1=x2+iy2x1+iy1=(x2+iy2)(x2iy2)(x1+iy1)(x2iy2)=x22+y22(x1x2+y1y2)+i(x2y1x1y2),z2=0

复平面

在这里插入图片描述
在这里插入图片描述

复数的模与辐角

r = ∣ z ∣ = x 2 + y 2 ⩾ 0 r=|z|=\sqrt{x^2+y^2}\geqslant0 r=z=x2+y2 0

tan ⁡ θ = y x , 称 为 复 数 z 的 辐 角 ( A r g u m e n t ) , 记 作 θ = A r g z \tan\theta=\frac{y}{x}, 称为复数z的辐角(Argument),记作\theta= Arg z tanθ=xy,zArgumentθ=Argz

我们知道,任一非零复数z有无穷多个辐角,今以arg z表示其中的一个特定值,并称合条件
− π < a r g   z ≤ π -\pi <arg\ z \le\pi π<arg zπ
的一个为Arg z的主值,或称之为z的主辐角。
θ = A r g   z = a r g   z + 2 k π , k = 0 , ± 1 , ± 2 , ⋯ \theta=Arg\ z=arg \ z + 2k\pi,k=0,\pm1,\pm2,\cdots θ=Arg z=arg z+2kπ,k=0,±1,±2,
当z=0时,辐角无意义。

单位复数

z = r ( cos ⁡ θ + i sin ⁡ θ ) z=r(\cos\theta+i\sin\theta) z=r(cosθ+isinθ)

当r=1时,有
z = cos ⁡ θ + i sin ⁡ θ z=\cos\theta+i\sin\theta z=cosθ+isinθ
称为单位复数。
e i θ = cos ⁡ θ + i sin ⁡ θ   ( 欧 拉 公 式 ) e^{i\theta}=\cos\theta+i\sin\theta \ (欧拉公式) eiθ=cosθ+isinθ ()

e i θ 1 e i θ 2 = e i ( θ 1 + θ 2 ) e i θ 1 e i θ 2 = e i ( θ 1 − θ 2 ) e^{i\theta_{1}}e^{i\theta_{2}}=e^{i(\theta_1+\theta_2)}\\ \frac{e^{i\theta_{1}}}{e^{i\theta_{2}}}=e^{i(\theta_1-\theta_2)} eiθ1eiθ2=ei(θ1+θ2)eiθ2eiθ1=ei(θ1θ2)

复数的指数形式
z = r e i θ z=re^{i\theta} z=reiθ
也就是说,任一非零复数z总可以表成
z = ∣ z ∣ e i   a r g   z z=|z|e^{i \ arg\ z} z=zei arg z

复数乘法与旋转

z 1 z 2 = r 1 e i θ 1 r 2 e i θ 2 = r 1 r 2 e i ( θ 1 + θ 2 ) z 1 z 2 = r 1 e i θ 1 r 2 e i θ 2 = r 1 r 2 e i ( θ 1 − θ 2 ) z_1z_2=r_1e^{i\theta_1}r_2e^{i\theta_2}=r_1r_2e^{i(\theta_1 +\theta_2)}\\ \frac{z_1}{z_2}=\frac{r_1e^{i\theta_1}}{r_2e^{i\theta_2}}=\frac{r_1}{r_2} e^{i(\theta_1-\theta_2)} z1z2=r1eiθ1r2eiθ2=r1r2ei(θ1+θ2)z2z1=r2eiθ2r1eiθ1=r2r1ei(θ1θ2)

∴ ∣ z 1 z 2 ∣ = ∣ z 1 ∣ ∣ z 2 ∣ , ∣ z 1 z 2 ∣ = ∣ z 1 ∣ ∣ z 2 ∣ , z 2 ≠ 0 \therefore |z_1z_2|=|z_1||z_2|,|\frac{z_1}{z_2}|=\frac{|z_1|}{|z_2|},z_2 \neq 0 z1z2=z1z2,z2z1=z2z1,z2=0

所以两个复数相乘相当于模相乘,辐角相加,相除就是模相除,辐角相减

在这里插入图片描述

特别的我们拿i乘以一个复数
i z = i ( x + i y ) = − y + i x iz=i(x+iy)=-y+ix iz=i(x+iy)=y+ix

在这里插入图片描述

复数的乘幂与方根

z n = ( r e i θ ) n = r n e i n θ = r n ( cos ⁡ n θ + i sin ⁡ n θ ) , z ≠ 0 ∴ ∣ z n ∣ = ∣ z ∣ n A r g   z n = n A r g   z z^{n}=(re^{i\theta})^{n}=r^{n}e^{in\theta}=r^{n}(\cos n\theta + i\sin n\theta),z \neq0\\ \therefore |z^{n}|=|z|^{n}\\ Arg\ z^{n}=nArg\ z zn=(reiθ)n=rneinθ=rn(cosnθ+isinnθ),z=0zn=znArg zn=nArg z
r=1,就是棣莫弗公式
( cos ⁡ θ + i sin ⁡ θ ) n = cos ⁡ n θ + i sin ⁡ n θ (\cos\theta + i\sin \theta)^{n}=\cos n\theta + i\sin n\theta (cosθ+isinθ)n=cosnθ+isinnθ

复 数 w 的 n 次 方 就 是 复 数 z , 求 出 复 数 w w n = z , z ≠ 0 , n ⩾ 2 , 整 数 复数w的n次方就是复数z,求出复数w\\ w^{n}=z,z \neq0,n \geqslant2,整数 wnzwwn=z,z=0,n2,

令 记 其 根 的 总 体 为 z n , 设 z = r e i θ , w = ρ e i φ , 则 ρ n e i n φ = r e i θ ∴ ρ n = r , n φ = θ + 2 k π 令记其根的总体为\sqrt[n]{z},设z=re^{i\theta},w=\rho e^{i\varphi},则\\ \rho^{n}e^{in\varphi}=re^{i\theta}\\ \therefore \rho^{n}=r,n\varphi=\theta+2k\pi nz ,z=reiθ,w=ρeiφ,ρneinφ=reiθρn=r,nφ=θ+2kπ

∴ ρ = r n = ∣ z ∣ n φ = θ + 2 k π n \therefore \rho =\sqrt[n]{r} =\sqrt[n]{|z|} \\ \varphi=\frac{\theta+2k\pi}{n} ρ=nr =nz φ=nθ+2kπ

所以z的n次方根为
w k = ρ e i φ = r n e i θ + 2 k π n = e i 2 k π n ⋅ r n e i θ n , k = 0 , ± 1 , ± 2 , ⋯ w_k=\rho e^{i\varphi}=\sqrt[n]{r}e^{i\frac{\theta+2k\pi}{n}}=e^{i\frac{2k\pi}{n}}\cdot\sqrt[n]{r}e^{i\frac{\theta}{n}},k=0,\pm1,\pm2,\cdots wk=ρeiφ=nr einθ+2kπ=ein2kπnr einθ,k=0,±1,±2,
把上面的式子改为
w k = e i 2 k π n ⋅ w 0 w 0 = r n e i θ n w_k=e^{i\frac{2k\pi}{n}}\cdot w_0\\ w_0=\sqrt[n]{r}e^{i\frac{\theta}{n}} wk=ein2kπw0w0=nr einθ

w k 就 是 在 复 平 面 内 由 w 0 依 次 绕 原 点 旋 转 2 π n , 2 ⋅ 2 π n , 3 ⋅ 2 π n , ⋯ w_k就是在复平面内由w_0依次绕原点旋转 \frac{2\pi}{n},2\cdot\frac{2\pi}{n},3\cdot\frac{2\pi}{n},\cdots wkw0n2π,2n2π,3n2π,

在这里插入图片描述

复数乘法与矩阵

假 设 复 数 p = a + b i , 乘 上 复 数 q = r cos ⁡ θ + i r sin ⁡ θ p q = a r cos ⁡ θ − b r sin ⁡ θ + ( a r sin ⁡ θ + b r cos ⁡ θ ) i = a ′ + b ′ i 用 矩 阵 表 示 [ a ′ b ′ ] = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] ⋅ [ a r b r ] 假设复数 p = a+bi,乘上复数q=r\cos \theta +i r\sin\theta\\ pq=ar\cos\theta-br\sin\theta+(ar\sin\theta + br\cos\theta)i=a^{'}+b^{'}i\\ 用矩阵表示\\ \left[ \begin{matrix} a^{'}\\ b^{'} \end{matrix} \right]= \left[ \begin{matrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta\\ \end{matrix} \right]\cdot\left[ \begin{matrix} ar\\ br \end{matrix} \right] p=a+biq=rcosθ+irsinθpq=arcosθbrsinθ+(arsinθ+brcosθ)i=a+bi[ab]=[cosθsinθsinθcosθ][arbr]

这 不 就 是 二 维 空 间 中 点 ( a , b ) 绕 原 点 逆 时 针 旋 转 θ 角 吗 , 模 长 也 扩 大 了 r 倍 这不就是二维空间中点(a,b)绕原点逆时针旋转\theta角吗,模长也扩大了r倍 a,bθ,r

https://www.youtube.com/watch?v=lKIBFLQZZUk

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值