机器学习简介

一、什么是机器学习?

是一门研究计算机模拟人类学习行为的学科
需要外部的明显指示,计算机自己通过数据进行建模和学习来进行建模和预测
简单的说,就是利用计算机把无序的数据转换为有用的信息的一门学科

二、什么是深度学习?
是基于机器学习延伸出来的一个新的领域
以人的大脑结构为启发的神经网络算法为起源
加之模型结构深度的增加发展
并伴随大数据和计算能力的提高而产生的一系列新的算法

三、机器学习的一些基本概念
训练集 / 训练样例:用来训练,是产生模型或算法的数据集
测试集 / 测试样例:用来测试已经学习好的模型或算法的数据集
特征向量:属性的集合,通常用向量表示,附属于一个实例
标签( label ):实例类别的标记
分类:目标标记为类别型数据
回归:目标标记为连续性数值
监督学习:训练集有类别标签
非监督学习:无类别标签
监督学习:有类别标签的训练集 + 无类别标签的训练集

四、机器学习步骤框架
1. 把数据拆分成训练集和测试集
2. 把训练集和训练集的特征向量来训练算法
3. 用学习来的算法运用在测试集上来评估算法





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值