一、什么是机器学习?
是一门研究计算机模拟人类学习行为的学科
不
需要外部的明显指示,计算机自己通过数据进行建模和学习来进行建模和预测
简单的说,就是利用计算机把无序的数据转换为有用的信息的一门学科
二、什么是深度学习?
是基于机器学习延伸出来的一个新的领域
以人的大脑结构为启发的神经网络算法为起源
加之模型结构深度的增加发展
并伴随大数据和计算能力的提高而产生的一系列新的算法
三、机器学习的一些基本概念
训练集
/
训练样例:用来训练,是产生模型或算法的数据集
测试集
/
测试样例:用来测试已经学习好的模型或算法的数据集
特征向量:属性的集合,通常用向量表示,附属于一个实例
标签(
label
):实例类别的标记
分类:目标标记为类别型数据
回归:目标标记为连续性数值
监督学习:训练集有类别标签
非监督学习:无类别标签
半
监督学习:有类别标签的训练集
+
无类别标签的训练集
四、机器学习步骤框架
1.
把数据拆分成训练集和测试集
2.
把训练集和训练集的特征向量来训练算法
3.
用学习来的算法运用在测试集上来评估算法