【Deep Learning】反向传播神经网络

本文深入探讨了反向传播在神经网络中的应用,通过计算图和链式法则阐述了如何计算梯度,进而更新网络权重。详细介绍了前馈计算过程以及反向传播算法的步骤,旨在理解如何利用反向传播有效地训练深度学习模型。
摘要由CSDN通过智能技术生成

        反向传播(back propagation):指用于计算梯度的方法,允许来自代价函数的信息通过网络向后流动,以便计算梯度。

一、计算图(computational graph)

        为了更加方便和形象的表示计算,使用图中的每一个节点来表示一个变量x,通过有向边,以及引入相应的操作(变量的简单函数),得到输出变量y。如下图所示,有向边汇集处的标识为对节点的变量进行相应的操作。

二、微积分中的链式法则

        设x 是实数,f 和g 是从实数映射到实数的函数。假设y = g(x) 并且z = f(g(x)) = f(y)。那么链式法则是说:

       注:此处的链式法则与概率论中的链式法则是完全不同的两回事。

三、前馈计算

        对于给定的一个前馈神经网络,我们用下面的记号来描述这样网络。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值