一、模型压缩核心技术
1.1 量化方案对比
类型 | 精度损失 | 推理加速 | 硬件支持 | 适用场景 |
---|---|---|---|---|
FP32 | - | 1x | 全部 | 训练环境 |
FP16 | <1% | 2.5x | GPU/TPU | 服务端 |
INT8 | 2-5% | 4x | 专用芯片 | 边缘设备 |
二值化 | 8-15% | 6x | FPGA | 超低功耗 |
TensorRT量化示例:
config.set_flag(trt.BuilderFlag.INT8)
config.int8_calibrator = DatasetCalibrator()
二、边缘部署实战
2.1 部署架构对比
方案 | 延迟 | 功耗 | 开发成本 | 典型硬件 |
---|---|---|---|---|
TensorRT | 15ms | 12W | 中 | Jetson Xavier |
OpenVINO | 22ms | 8W | 低 | Intel NUC |
TFLite | 35ms | 5W | 低 | Coral USB |
ONNX Runtime | 28ms | 10W | 高 | 各类设备 |
Jetson部署代码:
// 创建TensorRT引擎
auto engine = runtime->deserializeCudaEngine(modelData, modelSize);
auto context = engine->createExecutionContext();
// 异步推理队列
cudaStream_t stream;
cudaStreamCreate(&stream);
context->enqueueV2(buffers, stream, nullptr);
2.2 模型服务化方案
边缘云架构:
[摄像头] → [边缘节点预处理] → [中心云训练] → [边缘集群部署]
性能数据:
场景 | 云推理延迟 | 边缘推理延迟 | 带宽节省 |
---|---|---|---|
质检 | 380ms | 45ms | 92% |
安防 | 500ms | 60ms | 88% |
巡检 | 420ms | 55ms | 90% |
附录:工业部署工具包
-
模型转换器:TRT-Converter(支持自定义OP)
-
边缘监控:EdgeWatch(实时查看推理状态)
-
模型加密:SecureDL(防止模型泄露)