均值不等式

通过解析几何和均值不等式,求解正六边形底面的六棱锥,当其沿侧棱剪开后点P对应点在半径5的圆上时,体积最大值为3815。关键在于找到高h和底面面积S的最优比例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[题目]
已知六棱锥 P − A B C D E F P-ABCDEF PABCDEF ,底面 A B C D E F ABCDEF ABCDEF 为正六边形,点 P P P 在底面的射影为其中心,将该六棱锥沿六条侧棱剪开,使六个侧面和底面展开在同一平面上,若展开后点 P P P 在该平面上对应的六个点全部落在一个半径为 5 5 5 的圆上,则当正六边形 A B C D E F ABCDEF ABCDEF 的边长变化时,所得六棱锥体积的最大值为 ‾ \underline{\quad\qquad} .

[解析]
如图,连接 O P OP OP ,交 E F EF EF G G G ,设 O G = x OG=x OG=x ,则 G P = 5 − x GP=5-x GP=5x ,六棱锥的高 h = 25 − 10 x , S A B C D E F = 2 3 x 2 h=\sqrt{25-10x},S_{ABCDEF}=2\sqrt{3}x^2 h=2510x ,SABCDEF=23 x2 . 则 V = 1 3 ⋅ 2 3 x 2 ⋅ 25 − 10 x = 2 3 3 ⋅ 4 25 ⋅ ( 25 − 10 x ) ⋅ 5 2 x ⋅ 5 2 x ⋅ 5 2 x ⋅ 5 2 x ≤ 2 3 3 ⋅ 4 25 ⋅ 5 5 = 8 15 3 \begin{array}{rl}V&=\dfrac{1}{3}\cdot 2\sqrt{3}x^2\cdot\sqrt{25-10x} \\[2ex] &=\dfrac{2\sqrt{3}}{3}\cdot\dfrac{4}{25}\cdot\sqrt{(25-10x)\cdot\dfrac{5}{2}x\cdot\dfrac{5}{2}x\cdot\dfrac{5}{2}x\cdot\dfrac{5}{2}x} \\[2ex] &\leq\dfrac{2\sqrt{3}}{3}\cdot\dfrac{4}{25}\cdot\sqrt{5^5} \\[2ex] &=\dfrac{8\sqrt{15}}{ 3}\end{array} V=3123 x22510x =323 254(2510x)25x25x25x25x 323 25455 =3815 当且仅当 25 − 10 x = 5 2 x 25-10x=\dfrac{5}{2}x 2510x=25x ,即 x = 2 x=2 x=2 时,等号成立,六棱锥体积取最大值 8 15 3 \dfrac{8\sqrt{15}}{3} 3815 ,此时六边形的边长为 4 3 3 \dfrac{4\sqrt{3}}{3} 343 .

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值