[题目]
已知六棱锥
P
−
A
B
C
D
E
F
P-ABCDEF
P−ABCDEF ,底面
A
B
C
D
E
F
ABCDEF
ABCDEF 为正六边形,点
P
P
P 在底面的射影为其中心,将该六棱锥沿六条侧棱剪开,使六个侧面和底面展开在同一平面上,若展开后点
P
P
P 在该平面上对应的六个点全部落在一个半径为
5
5
5 的圆上,则当正六边形
A
B
C
D
E
F
ABCDEF
ABCDEF 的边长变化时,所得六棱锥体积的最大值为
‾
\underline{\quad\qquad}
.

[解析]
如图,连接
O
P
OP
OP ,交
E
F
EF
EF 于
G
G
G ,设
O
G
=
x
OG=x
OG=x ,则
G
P
=
5
−
x
GP=5-x
GP=5−x ,六棱锥的高
h
=
25
−
10
x
,
S
A
B
C
D
E
F
=
2
3
x
2
h=\sqrt{25-10x},S_{ABCDEF}=2\sqrt{3}x^2
h=25−10x,SABCDEF=23x2 . 则
V
=
1
3
⋅
2
3
x
2
⋅
25
−
10
x
=
2
3
3
⋅
4
25
⋅
(
25
−
10
x
)
⋅
5
2
x
⋅
5
2
x
⋅
5
2
x
⋅
5
2
x
≤
2
3
3
⋅
4
25
⋅
5
5
=
8
15
3
\begin{array}{rl}V&=\dfrac{1}{3}\cdot 2\sqrt{3}x^2\cdot\sqrt{25-10x} \\[2ex] &=\dfrac{2\sqrt{3}}{3}\cdot\dfrac{4}{25}\cdot\sqrt{(25-10x)\cdot\dfrac{5}{2}x\cdot\dfrac{5}{2}x\cdot\dfrac{5}{2}x\cdot\dfrac{5}{2}x} \\[2ex] &\leq\dfrac{2\sqrt{3}}{3}\cdot\dfrac{4}{25}\cdot\sqrt{5^5} \\[2ex] &=\dfrac{8\sqrt{15}}{ 3}\end{array}
V=31⋅23x2⋅25−10x=323⋅254⋅(25−10x)⋅25x⋅25x⋅25x⋅25x≤323⋅254⋅55=3815当且仅当
25
−
10
x
=
5
2
x
25-10x=\dfrac{5}{2}x
25−10x=25x ,即
x
=
2
x=2
x=2 时,等号成立,六棱锥体积取最大值
8
15
3
\dfrac{8\sqrt{15}}{3}
3815,此时六边形的边长为
4
3
3
\dfrac{4\sqrt{3}}{3}
343 .