一、Flink介绍
Apache Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。
以内存执行速度和任意规模来执行计算。
中文文档:https://nightlies.apache.org/flink/flink-docs-stable/zh/
Flink有四个基石:Checkpoint机制(保障数据一致性)、State(提供API)、Time(数据容错)、Window(操作窗口)
1.1 Flink简介
1.1.1 Checkpoint
Checkpoint机制 为Flink实现了一个分布式的一致性的快照,从而提供了一致性的语义;
1.1.2 State
虽然有了一致性的语义之后,Flink为了让用户在编程时更加轻松、更容易地去管理状态,提供了一套非常简单明了的StateApi,包括里面的有ValueState、ListState、MapState,近期还添加了BroadcastState,使用State API能够自动先用这种一致性的语义。
1.1.3 Time
Flink还实现了Watemark的机制,能够支持基于事件的时间的处理,或者说基于系统时间的处理,能够容忍数据的延时、容忍数据的迟到、容忍乱序的数据。
1.1.4 Window
Flink提供了开箱即用的各种窗口,比如滑动窗口、滚动窗口、会话窗口以及非常灵活的自定义窗口。
1.2 Flink流处理特性
- 支持高吞吐、低延迟、高性能的流处理
- 支持带有事件时间的窗口(Window)操作
- 支持有状态计算的 Exactly-once 语义
- 支持高度灵活的窗口(Window)操作,支持基于 time、count、session,以及 data-driven 的窗口操作
- 支持具有 Backpressure 功能的持续流模型
- 支持基于轻量级分布式快照(Snapshot)实现的容错
- 一个运行时同时支持 Batch on Streaming 处理和 Streaming 处理
- Flink 在 JVM 内部实现了自己的内存管理
- 支持迭代计算
- 支持程序自动优化:避免特定情况下 Shuffle、排序等昂贵操作,中间结果有必要进行缓存
1.3 Flink的批处理和流处理
批处理:有界、持久、大量,批处理适合需要访问全套记录才能完成的计算工作,一般用于离线统计;
流处理:无界、实时,流处理无需针对整个数据集执行操作,而是对通过系统传输的每个数据项进行操作,一般用于实时统计;
Flink可以同时处理批处理和流处理。Flink通过将批处理(即处理有限的静态数据)视作一种特殊的流处理;
1.4 Flink Runtime执行引擎
Flink的核心计算架构是下图中的Flink Runtime执行引擎,他是一个分布式系统,能够接受数据流程序 并在一台或多台机器上以容错方式执行。
上图为Flink技术栈的核心组成部分,值得一提的是,Flink分别提供:
①面向流处理的接口(DataStream API)
②面向批处理的接口(DataSet API)
因此,Flink既可以完成流处理,也可以完成批处理。
Flink还支持的拓展库涉及:
①机器学习(FlinkML)
②复杂事件处理(CEP)
③图计算(Gelly)
④分别针对流处理和批处理的Table API
一一一一一
DataStream API可以流程地分析无限数据流,并且可以用Java或者Scala等来实现。开发者需要基于一个叫DataStream的数据结构来开发,这个数据结构用于表示永不停止的分布式数据流。
Flink的分布式特点体现在他能够在成百上千台机器上运行,它将大型的计算任务分成许多小的部分,每个机器执行一部分。
Flink能够自动地确保发生机器故障或者其他错误时计算能够持续进行,或者在修复bug或进行版本升级后有计划地再次执行一次。这种能力使得开发人员不需要担心运行失败。
Flink本质上使用容错性数据流,这使得开发人员可以分析持续生成切用不结束的数据(即流处理);
二、Flink运行架构
2.1 Flink程序结构
Flink程序的基本构建块是 :流和转换;(注意:DataSet API中使用的DataSet也是内部流)
从概念上讲,
流:可能永无止境的数据记录流;
转换:是将一个或多个流作为一个或多个流的操作。(即,输入并产生一个或多个输出流)
2.1.1 Source数据源
Flink在流处理和批处理上的source大概有四类:
① 基于本地集合的source;
② 基于文件的source;
③ 基于网络套接字的source;
④ 自定义的source;
自定义的source常见的有Apache kafka、RabbitMQ等,当然你也可以自定义自己的source;
2.1.2 Transformation
数据转换的各种操作,有Map/FlatMap/Filter/KetBy/Reduce/Fold/Aggregations/Window/WindowAll./Window join/Split/Select等,操作很多,可以将数据转换计算成你想要的数据。
2.1.3Sink
Sink接收器,Flink将转换计算后的数据发送的地点,可能需要存储下来。
Flink常见的Sink大概有如下几类:写入文件、打印出来、写入socket、自定义的sink。
自定义的sink常见的有Apache Kafka、RabbitMQ、MySQL、ElasticSearch、Apache Cassandra、Hadoop FileSystem等,同理也可以定义自己的sink。
2.2 Flink并行数据流
Flink程序本质上是并行的和分布式的;
Flink程序在启动、执行、结束的各个流程:
① 执行的时候,会被映射成一个Streaming Dataflow,一个Streaming Dataflow 是由一组Stream和Transformation Operator组成的。
② 启动时从一个或多个Source Operator开始
③ 结束于一个或多个Sink Operator。
Flink程序执行流程:执行的时候,会被映射成一个Streaming Dataflow,一个Streaming Dataflow 是由一组Stream和Transformation Operator组成的;
一个流Stream 包含一个或多个流分区,而每一个operator包含一个或多个operator子任务,也就是 operator subtask【操作子任务】。
operator subtask【操作子任务】间彼此独立,在不同的线程中执行,甚至是在不同的机器或不同的容器上。
operator subtask【操作子任务】的数量是这一特定operator的并行度。
相同程序中operator有不同级别的并行度。
一个Stream可以被分成多个Stream的分区,也就是Stream Partition【分区】。
一个Operator也可以被分为多个Operator Subtask【子任务】,如下图;
分析图片:
- Source被分为Source1 和 Source2,它们是Source的Operator Subtask
- 【也就是说Source1和Source2都是Source的 Operator Subtask子任务】。
- 每一个Operator Subtask都是在不同的线程当中独立执行的;
- 一个Operator的并行度,就等于Operator Subtask的个数;
- 下图Source的并行度为2,而一个Stream的并行度就等于它生成的Operator的并行度;
- 数据在两个 operator 之间传递的时候有两种模式:
①One to One 模式:两个operator用此模式传递的时候,会保持数据的分区数和数据的排序;
如下图中的Source1到IMap1,它就保留的Source的分区特性,以及分区元素处理的有序性。
②Redistributing重新分配模式:这种模式会改变数据的分区数;
每一个Operator subtask【如下图的Source1 和 Source2】会根据选择Transformation把数据
发送到不同目标subtasks, 比如keyBy()会通过hashcode重新分区,broadcase()和rebalance()方法会随机重新分区;
2.3 Task和Operator chain
Flink的所有操作都被称之为Operator,客户端在提交任务的时候会对Operator进行优化操作,能进行合并的Operator会被合并为一个Operator,合并后的Operator称为Operator chain,实际上就是一个执行链,每个执行链会在TaskManager上一个独立的线程中执行。
2.4 任务调度与执行
- 当Flink执行executor会自动根据程序代码生成DAG数据流图;
- ActorSystem创建Actor将数据流图发送给JobManager的Actor;
- Jobmanager会不断接受TaskManager的心跳消息,从而可以获取到有效的TaskManager;
- JobManager通过调度器在TaskManager中调度执行Task(在Flink中,最小的调度单元就是task,对应就是一个线程);
- 在程序运行过程中,task和task之间是可以进行数据传输的;
Job Client【就是上图的Flink程序】:
- 主要职责是提交任务,提交后可以结束进程,也可以等待结果返回;
- Job Client 不是Flink程序执行的内部部分,但它是任务执行的起点;
- Job Client负责接收用户的程序代码,然后创建数据流,将数据流提交给Job Manager以便进一步执行。执行完成后,Job Client将结果返回给用户;
JobManager:
- 主要职责是调度工作并协调任务做检查点;
- 集群中至少要有一个master,master负责调度task,协调checkpoints和容错;
- 高可用设置的话可以有多个master,但是要保证一个是leader,其他是standby;
- JobManager包含Actor System、Scheduler调度器、CheckPoint协调器 三个重要的组件;
- JobManager从客户端【上图的Flink程序】接收到任务后,首先生成优化过的执行计划,再调度到TaskManager中执行;
TaskManager
- 主要职责是从JobManager处接收任务,并部署和启动任务,接收上游的数据并处理;
- TaskManager是在JVM中的一个或多个线程中执行任务的工作节点;
- TaskManager在创建之初就设置好了Slot【槽】,每个Slot可以执行一个任务;
2.4.1任务槽和槽共享
每个TaskManager是一个JVM的进程,可以在不同的线程中执行一个或多个子任务。为了控制一个worker能接收多少个task。worker通过task slot【任务槽】来进行控制(一个worker至少有一个task slot)
任务槽:
- 每个task slot表示TaskManager拥有资源的一个固定大小的子集;
- flink将进程的内存进行了划分到多个slot中;
- 上图中有两个taskManager,每个TaskManager有三个slot,每个slot占1/3的内存;
- 内存被划分到不同的slot之后可以获得如下好处:
①TaskManager最多能同时并发执行的任务是可以控制的,那就是3个,因为不能超过slot的数量;
②slot有独占的内存空间,这样在一个TaskManager中可以运行多个不同的作业,作业之间不受影响;
槽共享:
- 只需计算Job中最高并行度(parallelism)的task slot,只要这个满足,其他的job也都能满足;
- 资源分配更加公平,如果有比较空闲的slot可以将更多的任务分配给它。图中若没有任务槽共享,负载不高的Source/Map 等subtask将会占据许多资源,而负载较高的窗口subtask则会缺乏资源;
- 有了任务槽任务,可以将基本并行度(base parallelism)从2提升到6,提高了分槽资源的利用率。同时还可以保障TaskManager给subtask的分配的slot方案更加公平;
三、Flink快速上手
3.1 准备
需求:统计一段文字中,每个单词出现的频次;
版本:基于1.17.0版本;
数据准备:在工程根目录下创建一个input文件夹,并且在下面创建文本文件words.txt,随便如下数据
批处理思路:先逐行读入文件数据,然后将每一行文字拆分成单词;接着按照单词分组,统计每组数据的个数,就是对应单词的频次;
3.2 导入依赖
<!-- fink 相关依赖 -->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients</artifactId>
<version>1.17.0</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java</artifactId>
<version>1.17.0</version>
</dependency>
3.3 数据准备
查找到数据源:
思路:流处理,所以是一行一行的读取,然后按照空格切分,然后再分组统计;
3.4、批处理代码 :实现wordcount 案例
DataSet API 批处理 (过时了)
package com.flink17.demo;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.AggregateOperator;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.operators.FlatMapOperator