1. PFH —— Point Feature Histogram
(1)输入
- 点云中所有点的坐标
- 点云中所有点的法向量
- 待查询点:所要描述的特征点
(2)输出
长度为 B 3 B^3 B3的数组, B B B表示每个直方图中的bins通道数,3表示一共生成3个直方图
(3)核心思想
- 对点云进行旋转、平移等操作时,特征点的描述子是不变的
- 通过当前特征点邻域的法向量变化来描述
(4)具体操作
对于旋转、平移不变性,获取一个以当前特征点为圆心的圆内的所有点,并将这些点两两相连形成pair,那么对于一对点的特征描述如下:
-
记点 p 1 p_1 p1的法向量记为 n 1 n_1 n1,点 p 2 p_2 p2的法向量记为 n 2 n_2 n2
-
建立当前pair的坐标系:用于表示当前pair对点的相对位置关系,以及它们自身的位置(法线描述的)
u = n 1 v = u × p 2 − p 1 ∥ p 2 − p 1 ∥ 2 w = u × v u=n_1 \ \ \ \ \ \ v = u \times{\frac{p_2-p_1}{\| p_2-p_1 \|_2}} \ \ \ \ \ \ w=u\times{v} u=n1 v=u×∥p2−p1∥2p2−p1 w=u×v
-
计算当前pair对的特征:
α = v ⋅ n 2 ϕ = u ⋅ p 2 − p 1 ∥ p 2 − p 1 ∥ 2 θ = a r c t a n ( w ⋅ n 2 , u ⋅ n 2 ) \alpha = v \cdot {n_2} \ \ \ \ \ \ \phi = u \cdot {\frac{p_2-p_1}{\| p_2-p_1 \|_2}} \ \ \ \ \ \ \theta = arctan(w\cdot{n_2}, u \cdot {n_2}) α=v⋅n2 ϕ=u⋅∥p2