三维点云处理之特征点描述

本文介绍了三维点云处理中的PFH(Point Feature Histogram)和FPFH(Fast Point Feature Histogram)算法,详细阐述了两者的核心思想、计算过程以及在特征点描述中的应用。PFH通过邻域点对的法向量变化来生成不变性描述子,而FPFH则是优化版,减少了计算量。实践部分展示了如何提取特征点的FPFH描述并验证其相似性。
摘要由CSDN通过智能技术生成

1. PFH —— Point Feature Histogram

(1)输入

  • 点云中所有点的坐标
  • 点云中所有点的法向量
  • 待查询点:所要描述的特征点

(2)输出

​ 长度为 B 3 B^3 B3的数组, B B B表示每个直方图中的bins通道数,3表示一共生成3个直方图

(3)核心思想

  • 对点云进行旋转、平移等操作时,特征点的描述子是不变的
  • 通过当前特征点邻域的法向量变化来描述

(4)具体操作

​ 对于旋转、平移不变性,获取一个以当前特征点为圆心的圆内的所有点,并将这些点两两相连形成pair,那么对于一对点的特征描述如下:

  • 记点 p 1 p_1 p1的法向量记为 n 1 n_1 n1,点 p 2 p_2 p2的法向量记为 n 2 n_2 n2

  • 建立当前pair的坐标系:用于表示当前pair对点的相对位置关系,以及它们自身的位置(法线描述的)
    u = n 1        v = u × p 2 − p 1 ∥ p 2 − p 1 ∥ 2        w = u × v u=n_1 \ \ \ \ \ \ v = u \times{\frac{p_2-p_1}{\| p_2-p_1 \|_2}} \ \ \ \ \ \ w=u\times{v} u=n1      v=u×p2p12p2p1      w=u×v在这里插入图片描述

  • 计算当前pair对的特征:
    α = v ⋅ n 2        ϕ = u ⋅ p 2 − p 1 ∥ p 2 − p 1 ∥ 2        θ = a r c t a n ( w ⋅ n 2 , u ⋅ n 2 ) \alpha = v \cdot {n_2} \ \ \ \ \ \ \phi = u \cdot {\frac{p_2-p_1}{\| p_2-p_1 \|_2}} \ \ \ \ \ \ \theta = arctan(w\cdot{n_2}, u \cdot {n_2}) α=vn2      ϕ=up2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值