T1 三角形面积

题目背景

请尽量在 20min 之内写完题目。这是指「写代码」的时间;「读题」时间不计算在内。

题目描述

给定平面直角坐标系上的三个整点 A, B, CA,B,C 的坐标,求其围成的三角形面积。

数据保证答案一定是整数。所以如果你采用了浮点数来计算,请四舍五入到整数


两点之间的距离公式: (x_1, y_1), (x_2, y_2)(x1​,y1​),(x2​,y2​) 之间的距离是 \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}(x1​−x2​)2+(y1​−y2​)2​

海伦公式: 若三角形的边长为 a, b, ca,b,c,则三角形的面积是 \sqrt{s(s-a)(s-b)(s-c)}s(s−a)(s−b)(s−c)​,其中 s=\frac12(a+b+c)s=21​(a+b+c).

输入格式

共三行,每行表示一个三角形上的点。
每行包含两个正整数,表示点的坐标,形式为 x y

输出格式

共一行,一个整数,表示三角形面积。

输入输出样例

输入 #1复制

10 20
30 40
50 50

输出 #1复制

100

说明/提示

样例解释

可以通过海伦公式计算面积。方法如下。

ABAB 距离:\sqrt{(30 - 10)^2 + (40 -20)^2} \approx 28.284(30−10)2+(40−20)2​≈28.284
BCBC 距离:\sqrt{(50-30)^2 + (50-40)^2} \approx 22.361(50−30)2+(50−40)2​≈22.361
ACAC 距离:\sqrt{(50-10)^2+(50-20)^2}\approx 50(50−10)2+(50−20)2​≈50

应用海伦公式,s \approx (28.284 + 22.361 + 50) / 2 \approx 50.323s≈(28.284+22.361+50)/2≈50.323
求出近似面积: \sqrt{s(s-a)(s-b)(s-c)} \approx \sqrt{10016.80} \approx 100.08s(s−a)(s−b)(s−c)​≈10016.80​≈100.08,故答案为 100100。

数据规模与约定

对于 100\%100% 的数据:每个点的 x, yx,y 坐标值一定在 [1, 200][1,200] 之内,均为整数;答案一定为正整数

C++ 中有一个函数叫做 sqrt,这个函数定义在头文件 cmath 内。sqrt(x) 求 xx 的算术平方根。

四舍五入可以使用 round 函数。round 函数同样定义在 cmath 内。round(x) 求 xx 四舍五入后的值。

注意,round 函数的返回值不是整数,所以我们使用 static_cast<int> (x) 让他变成整数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值