贪心——积木

积木
NOIP的贪心题,不是想象中的那样

很明显,这题应用贪心,但我们发现贪心的方法有很多,
比如:先找最小的;先找最大的…

但很快发现上述的贪心方法都要考虑两边的情况,不能很好地实现,即没有那么好让程序实现我们的选择方案

这是考虑线性的贪心,因为这样只用考虑一边,仔细找一找,发现是有的。

因 为 如 果 前 一 个 大 于 后 一 个 , 则 去 前 一 个 的 时 候 可 以 顺 便 取 走 后 一 个 . 反 之 取 完 前 一 个 的 时 候 可 以 消 耗 掉 后 一 个 的 一 些 需 要 的 积 木 因为如果前一个大于后一个,则去前一个的时候可以顺便取走后一个 .反之取完前一个的时候可以消耗掉后一个的一些需要的积木 便.



这个方法看起来是可以的,但要考虑证明

简单证明:
假设一个为中点,将原数列分成两段,中点操作一步就会消失
那么我们发现,无论选择何时操作中点,最优方案就是左右都扩展到尽头,无论何时操作,每个数都只会+1
即我们先让中点消失和后让中点消失没有影响,
即我们可以从最左边的一次过,即我们可以直接从一边开始
同理,中点n次操作消失也是从一边开始
结论,可以从左端直接开始取完

所以我们发现可以线性贪心。

#include<bits/stdc++.h>
using namespace std;

const int N=100010;
int n;
int main(){
	scanf("%d",&n);
	int last=0,ans=0;
	for(int i=1;i<=n;i++){
		int a;
		scanf("%d",&a);
		if(a>last){
			ans+=(a-last);
		}
		last=a;
	}
	printf("%d",ans);
}

总结:发现贪心要考虑两边的时候,不妨想办法使贪心只用考虑一边

贪心算法是一种问题求解方法,它在每一步总是做出当前情况下的最优选择,以期望获得最优解。而"最大整数"同样可以使用贪心算法来求解。 对于"最大整数"的问题,我们可以考虑如下的贪心策略:从高位开始,尽可能选择较大的数字。具体步骤如下: 1. 对于给定的整数,我们首先将其转化为一个数组,其中每个元素表示整数的一个位数。 2. 从最高位(最左侧)开始,遍历数组。 3. 对于当前位上的数字,从9开始递减,找到第一个小于等于当前数字的最大数字。 4. 如果找到了符合条件的最大数字,将其放在当前位。否则,不做任何操作。 5. 继续向下遍历,重复步骤3-4。 6. 最终,得到的数组即为满足条件的最大整数。 以一个具体的例子说明上述算法:假设给定的整数为5372。 1. 将整数转化为数组[5, 3, 7, 2]。 2. 从最高位开始遍历。 3. 对于第一位5,从9开始递减,找到第一个小于等于5的数字,为7。 4. 将7放在第一位,得到[7, 3, 7, 2]。 5. 对于第二位3,从9开始递减,找到第一个小于等于3的数字,为3(与当前数字相等)。 6. 不做任何操作,得到[7, 3, 7, 2]。 7. 对于第三位7,从9开始递减,找到第一个小于等于7的数字,为7。 8. 将7放在第三位,得到[7, 3, 7, 2]。 9. 对于第四位2,从9开始递减,找到第一个小于等于2的数字,为2。 10. 将2放在第四位,得到[7, 3, 7, 2]。 11. 遍历结束,最终得到的数组为[7, 3, 7, 2],转化为整数为7372。 通过上述贪心算法,我们得到了满足条件的最大整数7372。证明了贪心算法在"最大整数"问题中的有效性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值