一,题目
# 通往奥格瑞玛的道路
## 题目背景
在艾泽拉斯大陆上有一位名叫歪嘴哦的神奇术士,他是部落的中坚力量。
有一天他醒来后发现自己居然到了联盟的主城暴风城。
在被众多联盟的士兵攻击后,他决定逃回自己的家乡奥格瑞玛。
## 题目描述
在艾泽拉斯,有 $n$ 个城市。编号为 $1,2,3,\ldots,n$。
城市之间有 $m$ 条双向的公路,连接着两个城市,从某个城市到另一个城市,会遭到联盟的攻击,进而损失一定的血量。
每次经过一个城市,都会被收取一定的过路费(包括起点和终点)。路上并没有收费站。
假设 $1$ 为暴风城,$n$ 为奥格瑞玛,而他的血量最多为 $b$,出发时他的血量是满的。如果他的血量降低至负数,则他就无法到达奥格瑞玛。
歪嘴哦不希望花很多钱,他想知道,在可以到达奥格瑞玛的情况下,他所经过的所有城市中最多的一次收取的费用的最小值是多少。
## 输入格式
第一行 $3$ 个正整数,$n,m,b$。分别表示有 $n$ 个城市,$m$ 条公路,歪嘴哦的血量为 $b$。
接下来有 $n$ 行,每行 $1$ 个正整数,$f_i$。表示经过城市 $i$,需要交费 $f_i$ 元。
再接下来有 $m$ 行,每行 $3$ 个正整数,$a_i,b_i,c_i$($1\leq a_i,b_i\leq n$)。表示城市 $a_i$ 和城市 $b_i$ 之间有一条公路,如果从城市 $a_i$ 到城市 $b_i$,或者从城市 $b_i$ 到城市 $a_i$,会损失 $c_i$ 的血量。
## 输出格式
仅一个整数,表示歪嘴哦交费最多的一次的最小值。
如果他无法到达奥格瑞玛,输出 `AFK`。
## 样例 #1
### 样例输入 #1
```
4 4 8
8
5
6
10
2 1 2
2 4 1
1 3 4
3 4 3
```
### 样例输出 #1
```
10
```
## 提示
对于 $60\%$ 的数据,满足 $n\leq 200$,$m\leq 10^4$,$b\leq 200$;
对于 $100\%$ 的数据,满足 $n\leq 10^4$,$m\leq 5\times 10^4$,$b\leq 10^9$;
对于 $100\%$ 的数据,满足 $c_i\leq 10^9$,$f_i\leq 10^9$,可能有两条边连接着相同的城市。
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<math.h>
#include<cmath>
#include<string>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<cstring>
#include<string>
#include<iostream>
#include<unordered_set>
using namespace std;
#define endl '\n'
#define ll long long
#define int long long
#define double long double
const int N = 2e5 + 5;
int city[N];
int n, m, b;
vector<pair<int, int>> e[N];
int dis[N];
bool dij(int mid)
{
if (city[1] > mid) return 0;
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q;
for (int i = 1; i <= n; ++i) dis[i] = INT64_MAX;
dis[1] = 0, q.push(make_pair(0, 1));
while (!q.empty())
{
int top = q.top().first, pos = q.top().second;
q.pop();
if (top != dis[pos]) continue;
for (int i = 0; i < e[pos].size(); ++i)
{
int fir = e[pos][i].first, sec = e[pos][i].second;
if (city[fir] > mid) continue;
if (dis[fir] > dis[pos] + sec)
{
dis[fir] = dis[pos] + sec;
q.push(make_pair(dis[fir], fir));
}
}
}
//cout << dis[n] << " " << mid << endl;
return dis[n] <= b;
}
signed main()
{
ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> n >> m >> b;
for (int i = 1; i <= n; ++i) cin >> city[i];
for (int i = 1; i <= m; ++i)
{
int x, y, z;
cin >> x >> y >> z;
e[x].push_back(make_pair(y, z));
e[y].push_back(make_pair(x, z));
}
dij(0);
int l = 0, r = 1000000007, ans = -1;
while (l <= r)
{
int mid = l + r >> 1;
if (dij(mid)) r = mid - 1, ans = mid;
else l = mid + 1;
}
if (ans == -1) cout << "AFK";
else cout << ans;
return 0;
}