哈工大ltp,分词,词性标注,命名实体识别技术的特征提取

1、分词的特征提取

给定一个字符判断:

       1、标点符号

       2、数字

       3、中文数字

       4、字母

     等等


2、词性标注的特征提取:

         1、后缀

         2、部首特征

         3、词重叠特征


3、命名实体识别特征提取:

      1、词的位置

      2、词性

### 实现分词词性标注命名实体识别 #### 分词 分词是指将连续的自然语言文本切分成具有语义意义的最小单元——词语的过程。这是中文自然语言处理中的一个重要步骤,因为汉语不像英语那样有明显的单词边界[^2]。 以下是基于 Python 和 `jieba` 库实现分词的例子: ```python import jieba text = "我爱自然语言处理" words = jieba.lcut(text) print(words) # 输出:['我', '爱', '自然语言', '处理'] ``` #### 词性标注 词性标注是对分词后的每一个词语赋予一个语法类别标签的任务。这些标签可以表示名词、动词、形容词等。通过词性标注,我们可以更好地理解句子结构以及各个成分之间的关系[^3]。 下面是一个使用 `HanLP` 进行词性标注的实例: ```python from pyhanlp import HanLP text = "我爱自然语言处理" result = HanLP.segment(text) for term in result: print(f"{term.word}\t{term.nature}") ``` 运行上述代码会得到如下输出: ``` 我 r 爱 v 自然语言 n 处理 vn ``` #### 命名实体识别 命名实体识别的目标是从文本中提取出特定类别的实体名称,比如人名、地名、机构名等。这一步骤对于信息检索、问答系统等领域尤为重要[^1]。 这里展示如何利用 `spaCy` 来完成英文环境下的 NER 任务;如果需要支持多国语言,则可考虑采用 `transformers` 或其他框架。 ```python import spacy nlp = spacy.load("en_core_web_sm") doc = nlp(u"My name is John and I work at Google.") for ent in doc.ents: print(ent.text, ent.label_) ``` 以上介绍了三种核心技术的基础概念及其简单实践方法。值得注意的是,在实际应用过程中可能还会涉及到模型训练、参数调优等多个方面的工作。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值