Spark算子篇 --Spark算子之aggregateByKey详解

一。基本介绍

rdd.aggregateByKey(3, seqFunc, combFunc) 其中第一个函数是初始值

3代表每次分完组之后的每个组的初始值。

seqFunc代表combine的聚合逻辑

每一个mapTask的结果的聚合成为combine

combFunc reduce端大聚合的逻辑

ps:aggregateByKey默认分组

二。代码

from pyspark import SparkConf,SparkContext
from __builtin__ import str
conf = SparkConf().setMaster("local").setAppName("AggregateByKey")
sc = SparkContext(conf = conf)

rdd = sc.parallelize([(1,1),(1,2),(2,1),(2,3),(2,4),(1,7)],2)

def f(index,items):
    print "partitionId:%d" %index
    for val in items:
        print val
    return items
    
rdd.mapPartitionsWithIndex(f, False).count()


def seqFunc(a,b):
    print "seqFunc:%s,%s" %(a,b)
    return max(a,b) #取最大值
def combFunc(a,b):
    print "combFunc:%s,%s" %(a ,b)
    return a + b #累加起来
'''
    aggregateByKey这个算子内部肯定有分组
'''
aggregateRDD = rdd.aggregateByKey(3, seqFunc, combFunc)
rest = aggregateRDD.collectAsMap()
for k,v in rest.items():
    print k,v

sc.stop()

 

三。详细逻辑

PS:

seqFunc函数 combine篇。

3是每个分组的最大值,所以把3传进来,在combine函数中也就是seqFunc中第一次调用 3代表a,b即1,max(a,b)即3 第二次再调用则max(3.1)中的最大值3即输入值,2即b值 所以结果则为(1,3)

底下类似。combine函数调用的次数与分组内的数据个数一致。

 

combFunc函数 reduce聚合

在reduce端大聚合拉完数据后也是先分组,然后再调用combFunc函数

四。结果

持续更新中。。。。,欢迎大家关注我的公众号LHWorld.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

L先生AI课堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值