Ubuntu环境下cuda安装时出现段错误(核心已转储)的解决办法

Ubuntu安装CUDA下载问题解决办法
部署运行你感兴趣的模型镜像

一、背景与问题描述

笔者按照网上教程,使用runfile方法去配置cuda的时候出现各种问题,第一步下载就不成功,每次下载到最后一秒都出现段错误(核心已转储),尝试了几次下载之后,换代理也是不行,,又尝试了两种方法,最后解决了,给遇到同样问题的同学一点我自己适用的解决方案~

我的系统版本是Ubuntu20.04,通过runfile安装cuda,cuda版本是11.03

二、解决办法

1.栈溢出,修改栈限制

在终端使用下列命令,显示当前 shell 会话中用户的各种资源限制,资源限制由 Linux 内核定义,用于防止用户进程消耗过多的系统资源。

ulimit -a

然后会输出以下内容

core file size          (blocks, -c) 0
data seg size           (kbytes, -d) unlimited
scheduling priority             (-e) 0
file size               (blocks, -f) unlimited
pending signals                 (-i) 63156
max locked memory       (kbytes, -l) 65536
max memory size         (kbytes, -m) unlimited
open files                      (-n) 1024
pipe size            (512 bytes, -p) 8
POSIX message queues     (bytes, -q) 819200
real-time priority              (-r) 0
stack size              (kbytes, -s) 8192
cpu time               (seconds, -t) unlimited
max user processes              (-u) 63156
virtual memory          (kbytes, -v) unlimited
file locks                      (-x) unlimited

看到stack size只有8192,我们下面要改大栈空间,以下代码任意一个

ulimit -s unlimited

或者

ulimit -s 20480

然后再输入

ulimit -a

就可以看到stack size扩大了

core file size          (blocks, -c) 0
data seg size           (kbytes, -d) unlimited
scheduling priority             (-e) 0
file size               (blocks, -f) unlimited
pending signals                 (-i) 63156
max locked memory       (kbytes, -l) 65536
max memory size         (kbytes, -m) unlimited
open files                      (-n) 1024
pipe size            (512 bytes, -p) 8
POSIX message queues     (bytes, -q) 819200
real-time priority              (-r) 0
stack size              (kbytes, -s) unlimited
cpu time               (seconds, -t) unlimited
max user processes              (-u) 63156
virtual memory          (kbytes, -v) unlimited
file locks                      (-x) unlimited


但是要注意当前终端改了大小,如果换了一个终端,还是默认的stack size,所以接下来就在当前的终端继续输入命令下载cuda_xxxx_xxxx_linux.run,即以下命令
举个例子11.0.3版本的Cuda

wget https://developer.download.nvidia.com/compute/cuda/11.0.3/local_installers/cuda_11.0.3_450.51.06_linux.run

2.不用wget下载,使用多线程下载工具axel

第一步安装axel

$ sudo apt-get install axel

第二步将原来的wget下载换为axel下载(注意下面的代码中的网站换为自己需要的网站)

axel https://developer.download.nvidia.com/compute/cuda/11.0.2/local_installers/cuda_11.0.2_450.51.05_linux.run

另外还有一个技巧,可以加快下载速度
就是将.com换为.cn

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值