本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html
提出了一种针对多微网配电系统(MMDS)的分层分布式调度模型,旨在实现低碳运行并保护多微网与配电网互动时的隐私。以下是文章的核心内容:
-
研究背景与目标:
- 面对电力系统低碳化运行需求及多微网配电系统协同互动隐私问题。
- 提出一种考虑多维联动碳减排策略的多微网配电系统分层分布式调度模型。
-
模型构建:
- 在微网层面引入碳捕集系统(CCS)和电转气(P2G)设备,构建CCS-P2G循环减碳模式。
- 在配电网层面引入碳排放流(CEF)理论,通过节点碳势量化交互功率碳排放,实现碳责均摊。
- 结合碳配额及碳交易机制,形成多维联动模式下的低碳运行策略。
-
方法论:
- 使用目标级联法(ATC)进行分层分布式方法解耦,实现各运营主体的分布式求解。
- 通过仿真结果验证所提策略能显著提升低碳经济运行水平,且分布式算法能准确有效求解。
-
关键技术创新点:
- 多维联动碳减排策略,包括CCS-P2G循环减碳、碳排放流理论和激励型需求响应机制。
- 分层分布式调度模型,保护隐私的同时实现多微网和配电网的协同低碳运行。
-
研究意义:
- 所提出的调度方法能显著提升低碳经济运行水平。
- 分布式调度策略能通过交互有限信息实现微网-配电网协同的精确快速求解。
- 策略在大规模复杂系统和不同季节典型日算例中有效应用,具有一定泛用性。
-
资助信息:
- 国家自然科学基金项目(52307154)、江苏省自然科学基金项目(BK20231076)和中央高校基本科研业务费专项资金(MCCSE2023A02)支持。
-
结论:
- 提出的多维联动碳减排策略能有效促进能源消纳与柔性资源的优化整合,实现多微网和配电网协同低碳经济运行。
- 基于ATC的分布式求解策略具有良好的收敛效果,并且在大规模系统或不同季节典型日算例中也呈现较好的收敛性能。
文章通过理论分析和算例验证,展示了所提模型和策略的有效性和实用性。
为了复现文章中的仿真实验,我们需要遵循以下步骤,并以Python语言为例,使用伪代码的形式表示。请注意,以下代码需要结合具体的数学模型和算法库来实现。
# 导入必要的库
import numpy as np
from optimization_solver import solve_optimization # 假设的优化求解器库
# 初始化参数
def initialize_parameters():
# 配电网和微网的设备配置、运行参数、技术参数等
# 需求响应配置,包括可转移负荷、可中断负荷和可削减负荷的比例和补偿成本
# ATC算法的参数设置,包括罚函数乘子初值、收敛精度等
pass
# 构建配电网运行模型
def build_distribution_network_model(params):
# 包括支路潮流模型和系统安全约束等
pass
# 构建多微网运行模型
def build_multi_microgrid_model(params):
# 包括CCS-P2G循环减碳模式、柔性需求响应模型等
pass
# 分层分布式调度
def hierarchical_distributed_scheduling(dn_model, mmg_model, params):
converged = False
iteration = 0
while not converged:
# 配电网层优化
dn_result = solve_optimization(dn_model, params)
# 微网层优化
mmg_result = solve_optimization(mmg_model, params, dn_result)
# 检查收敛条件
converged = check_convergence(dn_result, mmg_result, params)
iteration += 1
if converged:
break
# 更新罚函数乘子
update_penalty_coefficients(mmg_result, dn_result, params)
return dn_result, mmg_result
# 检查收敛条件
def check_convergence(dn_result, mmg_result, params):
# 根据文章中的收敛判据进行检查
pass
# 更新罚函数乘子
def update_penalty_coefficients(mmg_result, dn_result, params):
# 根据ATC算法更新罚函数乘子
pass
# 主函数
def main():
# 初始化参数
params = initialize_parameters()
# 构建模型
dn_model = build_distribution_network_model(params)
mmg_model = build_multi_microgrid_model(params)
# 分层分布式调度
dn_result, mmg_result = hierarchical_distributed_scheduling(dn_model, mmg_model, params)
# 结果分析
analyze_results(dn_result, mmg_result)
# 分析结果
def analyze_results(dn_result, mmg_result):
# 分析不同场景下的运行成本、碳排放量、风光消纳率等指标
pass
# 运行主函数
if __name__ == "__main__":
main()
initialize_parameters
: 初始化仿真所需的所有参数。build_distribution_network_model
: 根据配电网的参数构建配电网运行模型。build_multi_microgrid_model
: 根据微网的参数构建多微网运行模型。hierarchical_distributed_scheduling
: 实现分层分布式调度,包括配电网和微网的优化。check_convergence
: 检查是否满足收敛条件,如果满足则停止迭代。update_penalty_coefficients
: 更新罚函数乘子,以促进算法的收敛。analyze_results
: 对仿真结果进行分析,包括成本、碳排放量等指标的计算和比较。
请注意,上述代码是一个框架性的伪代码,实际实现时需要根据具体的数学模型和算法细节进行填充和调整。此外,optimization_solver
是一个假设的库,实际中可能需要使用如Gurobi、CPLEX或其他优化求解器库。
本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html