Python训练营打卡Day23

DAY 23 pipeline管道

知识回顾:
1.转化器和估计器的概念
2.管道工程
3.ColumnTransformer和Pipeline类

作业:
整理下全部逻辑的先后顺序,看看能不能制作出适合所有机器学习的通用pipeline
@浙大疏锦行


pipeline在机器学习领域可以翻译为“管道”,也可以翻译为“流水线”,是机器学习中一个重要的概念。

在机器学习中,通常会按照一定的顺序对数据进行预处理、特征提取、模型训练和模型评估等步骤,以实现机器学习模型的训练和评估。为了方便管理这些步骤,我们可以使用pipeline来构建一个完整的机器学习流水线。

pipeline是一个用于组合多个估计器(estimator)的 estimator,它实现了一个流水线,其中每个估计器都按照一定的顺序执行。在pipeline中,每个估计器都实现了fit和transform方法,fit方法用于训练模型,transform方法用于对数据进行预处理和特征提取。

在此之前我们先介绍下 转换器(transformer)和估计器(estimator)的概念。

转换器(transformer)

转换器(transformer)是一个用于对数据进行预处理和特征提取的 estimator,它实现一个 transform 方法,用于对数据进行预处理和特征提取。转换器通常用于对数据进行预处理,例如对数据进行归一化、标准化、缺失值填充等。转换器也可以用于对数据进行特征提取,例如对数据进行特征选择、特征组合等。转换器的特点是无状态的,即它们不会存储任何关于数据的状态信息(指的是不存储内参)。转换器仅根据输入数据学习转换规则(比如函数规律、外参),并将其应用于新的数据。因此,转换器可以在训练集上学习转换规则,并在训练集之外的新数据上应用这些规则。

常见的转换器包括数据缩放器(如StandardScaler、MinMaxScaler)、特征选择器(如SelectKBest、PCA)、特征提取器(如CountVectorizer、TF-IDFVectorizer)等。

之前我们都是说对xxxx类进行实例化,现在可以换一个更加准确的说法,如下:

# 导入StandardScaler转换器
from sklearn.preprocessing import StandardScaler

# 初始化转换器
scaler = StandardScaler()

# 1. 学习训练数据的缩放规则(计算均值和标准差),本身不存储数据
scaler.fit(X_train)

# 2. 应用规则到训练数据和测试数据
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)

# 也可以使用fit_transform一步完成
# X_train_scaled = scaler.fit_transform(X_train)

估计器(estimator)

估计器(Estimator)是实现机器学习算法的对象或类。它用于拟合(fit)数据并进行预测(predict)。估计器是机器学习模型的基本组成部分,用于从数据中学习模式、进行预测和进行模型评估。

估计器的主要方法是fit和predict。fit方法用于根据输入数据学习模型的参数和规律,而predict方法用于对新的未标记样本进行预测。估计器的特点是有状态的,即它们在训练过程中存储了关于数据的状态信息,以便在预测阶段使用。估计器通过学习训练数据中的模式和规律来进行预测。因此,估计器需要在训练集上进行训练,并使用训练得到的模型参数对新数据进行预测。

常见的估计器包括分类器(classifier)、回归器(regresser)、聚类器(clusterer)。


from sklearn.linear_model import LinearRegression
# 创建一个回归器
model = LinearRegression()
# 在训练集上训练模型
model.fit(X_train_scaled, y_train)
# 对测试集进行预测
y_pred = model.predict(X_test_scaled)

管道(pipeline)

了解了分类器和估计器,所以可以理解为在机器学习是由转换器(Transformer)和估计器(Estimator)按照一定顺序组合在一起的来完成了整个流程。

机器学习的管道(Pipeline)机制通过将多个转换器和估计器按顺序连接在一起,可以构建一个完整的数据处理和模型训练流程。在管道机制中,可以使用Pipeline类来组织和连接不同的转换器和估计器。Pipeline类提供了一种简单的方式来定义和管理机器学习任务的流程。

管道机制是按照封装顺序依次执行的一种机制,在机器学习算法中得以应用的根源在于,参数集在新数据集(比如测试集)上的重复使用。且代码看上去更加简洁明确。这也意味着,很多个不同的数据集,只要处理成管道的输入形式,后续的代码就可以复用。(这里为我们未来的python文件拆分做铺垫),也就是把很多个类和函数操作写进一个新的pipeline中。

这符合编程中的一个非常经典的思想:don’t repeat yourself。(dry原则),也叫做封装思想,我们之前提到过类似的思想的应用: 函数、类,现在我们来说管道。

Pipeline最大的价值和核心应用场景之一,就是与交叉验证和网格搜索等结合使用,来:

  1. 防止数据泄露: 这是在使用交叉验证时,Pipeline自动完成预处理并在每个折叠内独立fit/transform的关键优势。
  2. 简化超参数调优: 可以方便地同时调优预处理步骤和模型的参数。

下面我们将对我们的信贷数据集进行管道工程,重构整个代码。之所以提到管道,是因为后续在阅读一些经典的代码的时候,尤其是官方文档,非常喜欢用管道来构建代码,甚至深度学习中也有类似的代码,初学者往往看起来很吃力。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import time # 导入 time 库
import warnings
warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False # 防止负号显示问题

# 导入 Pipeline 和相关预处理工具
from sklearn.pipeline import Pipeline #  用于创建机器学习工作流
from sklearn.compose import ColumnTransformer # 用于将不同的预处理应用于不同的列,之前是对datafame的某一列手动处理,如果在pipeline中直接用standardScaler等函数就会对所有列处理,所以要用到这个工具
from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder, StandardScaler # 用于数据预处理
from sklearn.impute import SimpleImputer # 用于处理缺失值

# 机器学习相关库
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, precision_score, recall_score, f1_score
from sklearn.model_selection import train_test_split # 只导入 train_test_split


# --- 加载原始数据 ---
data = pd.read_csv('data.csv')


# Pipeline 将直接处理分割后的原始数据 X_train, X_test
# 原手动预处理步骤 (将被Pipeline替代):
# Home Ownership 标签编码
# Years in current job 标签编码
# Purpose 独热编码
# Term 0 - 1 映射并重命名
# 连续特征用众数补全


# --- 分离特征和标签 (使用原始数据) ---
y = data['Credit Default']
X = data.drop(['Credit Default'], axis=1)

# --- 划分训练集和测试集 (在任何预处理之前划分) ---
# X_train 和 X_test 现在是原始数据中划分出来的部分,不包含你之前的任何手动预处理结果
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)


# --- 定义不同列的类型和它们对应的预处理步骤 (这些将被放入 Pipeline 的 ColumnTransformer 中) ---
# 这些定义是基于原始数据 X 的列类型来确定的

# 识别原始的 object 列 (对应你原代码中的 discrete_features 在预处理前)
object_cols = X.select_dtypes(include=['object']).columns.tolist()

# 有序分类特征 (对应你之前的标签编码)
# 注意:OrdinalEncoder默认编码为0, 1, 2... 对应你之前的1, 2, 3...需要在模型解释时注意
# 这里的类别顺序需要和你之前映射的顺序一致
ordinal_features = ['Home Ownership', 'Years in current job', 'Term']
# 定义每个有序特征的类别顺序,这个顺序决定了编码后的数值大小
ordinal_categories = [
    ['Own Home', 'Rent', 'Have Mortgage', 'Home Mortgage'], # Home Ownership 的顺序 (对应1, 2, 3, 4)
    ['< 1 year', '1 year', '2 years', '3 years', '4 years', '5 years', '6 years', '7 years', '8 years', '9 years', '10+ years'], # Years in current job 的顺序 (对应1-11)
    ['Short Term', 'Long Term'] # Term 的顺序 (对应0, 1)
]
# 先用众数填充分类特征的缺失值,然后进行有序编码
ordinal_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')), # 用众数填充分类特征的缺失值
    ('encoder', OrdinalEncoder(categories=ordinal_categories, handle_unknown='use_encoded_value', unknown_value=-1))
])


# 分类特征 
nominal_features = ['Purpose'] # 使用原始列名
# 先用众数填充分类特征的缺失值,然后进行独热编码
nominal_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')), # 用众数填充分类特征的缺失值
    ('onehot', OneHotEncoder(handle_unknown='ignore', sparse_output=False)) # sparse_output=False 使输出为密集数组
])


# 连续特征
# 从X的列中排除掉分类特征,得到连续特征列表
continuous_features = X.columns.difference(object_cols).tolist() # 原始X中非object类型的列

# 先用众数填充缺失值,然后进行标准化
continuous_transformer = Pipeline(steps=[
    ('imputer', SimpleImputer(strategy='most_frequent')), # 用众数填充缺失值 (复现你的原始逻辑)
    ('scaler', StandardScaler()) # 标准化,一个好的实践
])

# --- 构建 ColumnTransformer ---
# 将不同的预处理应用于不同的列子集,构造一个完备的转化器
preprocessor = ColumnTransformer(
    transformers=[
        ('ordinal', ordinal_transformer, ordinal_features),
        ('nominal', nominal_transformer, nominal_features),
        ('continuous', continuous_transformer, continuous_features)
    ],
    remainder='passthrough' # 保留没有在transformers中指定的列(如果存在的话),或者 'drop' 丢弃
)

# --- 构建完整的 Pipeline ---
# 将预处理器和模型串联起来
# 使用你原代码中 RandomForestClassifier 的默认参数和 random_state,这里的参数用到了元组这个数据结构
pipeline = Pipeline(steps=[
    ('preprocessor', preprocessor), # 第一步:应用所有的预处理 (ColumnTransformer)
    ('classifier', RandomForestClassifier(random_state=42)) # 第二步:随机森林分类器
])

# --- 1. 使用 Pipeline 在划分好的训练集和测试集上评估 ---

print("--- 1. 默认参数随机森林 (训练集 -> 测试集) ---") 
start_time = time.time() # 记录开始时间

# 在原始的 X_train 上拟合整个Pipeline
# Pipeline会自动按顺序执行preprocessor的fit_transform(X_train),然后用处理后的数据拟合classifier
pipeline.fit(X_train, y_train)

# 在原始的 X_test 上进行预测
# Pipeline会自动按顺序执行preprocessor的transform(X_test),然后用处理后的数据进行预测
pipeline_pred = pipeline.predict(X_test)

end_time = time.time() # 记录结束时间

print(f"训练与预测耗时: {end_time - start_time:.4f} 秒") # 使用你原代码的输出格式

print("\n默认随机森林 在测试集上的分类报告:") # 使用你原代码的输出文本
print(classification_report(y_test, pipeline_pred))
print("默认随机森林 在测试集上的混淆矩阵:") # 使用你原代码的输出文本
print(confusion_matrix(y_test, pipeline_pred))

在这里插入图片描述


通用机器学习Pipeline逻辑流程

  1. 数据加载与初步检查

    • 加载原始数据
    • 分离特征(X)和标签(y
    • 检查缺失值和数据类型
  2. 数据分割

    • 在任何预处理之前划分训练集和测试集(避免数据泄露)
  3. 定义特征类型

    • 自动识别或手动指定特征类型:
      • 数值型特征(需缩放)
      • 分类型特征(需编码)
      • 有序型特征(需顺序编码)
  4. 构建预处理Pipeline

    • 使用ColumnTransformer对不同类型特征应用不同处理:
      • 缺失值填充(众数/均值/中位数)
      • 分类特征编码(独热编码/标签编码)
      • 数值特征标准化/归一化
  5. 模型训练与评估

    • 将预处理和模型封装为完整Pipeline
    • 训练集拟合、测试集预测
    • 输出评估指标(分类报告、混淆矩阵等)
  6. 超参数调优(可选)

    • 结合网格搜索(GridSearchCV)优化预处理和模型参数

通用Pipeline代码框架

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import (
    StandardScaler, OneHotEncoder, OrdinalEncoder
)
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report

# 1. 数据加载
data = pd.read_csv("data.csv")
X = data.drop("target_column", axis=1)
y = data["target_column"]

# 2. 数据分割(先于预处理)
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
)

# 3. 定义特征类型(示例,需根据实际数据调整)
numeric_features = ["age", "income"]                    # 数值型特征
categorical_features = ["gender", "city"]               # 标称型分类特征
ordinal_features = ["education_level"]                  # 有序型分类特征
ordinal_categories = [["高中", "本科", "硕士", "博士"]]  # 有序特征的顺序

# 4. 构建预处理Pipeline
numeric_transformer = Pipeline(steps=[
    ("imputer", SimpleImputer(strategy="median")),      # 缺失值填充
    ("scaler", StandardScaler())                        # 标准化
])

categorical_transformer = Pipeline(steps=[
    ("imputer", SimpleImputer(strategy="most_frequent")),
    ("onehot", OneHotEncoder(handle_unknown="ignore"))  # 独热编码
])

ordinal_transformer = Pipeline(steps=[
    ("imputer", SimpleImputer(strategy="most_frequent")),
    ("ordinal", OrdinalEncoder(categories=ordinal_categories))
])

preprocessor = ColumnTransformer(transformers=[
    ("num", numeric_transformer, numeric_features),
    ("cat", categorical_transformer, categorical_features),
    ("ord", ordinal_transformer, ordinal_features)
])

# 5. 构建完整Pipeline(预处理 + 模型)
pipeline = Pipeline(steps=[
    ("preprocessor", preprocessor),
    ("classifier", RandomForestClassifier(random_state=42))
])

# 6. 训练与评估
pipeline.fit(X_train, y_train)
y_pred = pipeline.predict(X_test)
print(classification_report(y_test, y_pred))

# 7. 超参数调优示例(需导入GridSearchCV)
# params = {
#     "preprocessor__num__imputer__strategy": ["mean", "median"],
#     "classifier__n_estimators": [100, 200]
# }
# grid_search = GridSearchCV(pipeline, params, cv=5)
# grid_search.fit(X_train, y_train)
# print("最佳参数:", grid_search.best_params_)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值