本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html
这篇文章主要研究了在电力现货市场背景下,如何优化区域电网的跨区跨省购电能力,以确保电力供应安全。以下是文章的核心内容:
-
研究背景:随着电力市场多级交织耦合,区域电网在发挥交易通道作用的同时,面临网络阻塞和安全保供等运行风险。文章针对市场化模式下的保供应场景,提出了一种优化方法。
-
问题识别:在电力现货市场中,省级电网需要考虑省间交易对省内输电断面的影响,以及直流馈入对受端电网稳定性的影响。
-
省内网络阻塞形成机理:基于省间交易通道、省间物理联络线和省内输电断面的关联关系模型,分析了省内网络阻塞的形成机制。
-
梯度提升树算法:使用梯度提升树算法预测省内输电断面的阻塞情况,将阻塞程度分为不同等级,并给出不同阻塞等级的概率,帮助调度部门把握电网整体局势。
-
优化模型:建立了一个优化模型,目标是最大化区外购电量,同时考虑直流馈入稳定约束和省内断面功率约束。
-
算例分析:基于华中某省网的实际运行数据,验证了所提方法的有效性。结果表明,该方法能充分考虑省网现状,有效辨识省内阻塞断面,并合理指导购电计划的制定。
-
结论:该研究建立的优化模型有助于提升跨区跨省购电量,同时保证受端省网的安全稳定。未来的研究可以进一步考虑新能源的波动性以及市场出清结果与购电计划的偏差。
文章的关键词包括电力现货市场、供电支撑、网络阻塞、梯度提升树和直流馈入稳定。
为了复现文章中的仿真算例,我们需要遵循以下步骤,并使用Python语言结合适当的库来实现。以下是复现仿真的步骤和代码示例:
# 步骤 1: 导入必要的库
import numpy as np
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 步骤 2: 准备数据集
# 假设我们已经有了一个包含历史数据的CSV文件,其中包含输电断面的相关信息和阻塞等级标签
# 加载数据集
data = np.loadtxt('historical_data.csv', delimiter=',', skiprows=1)
# 特征和标签
features = data[:, 1:-1] # 假设最后一列是标签,其余是特征
labels = data[:, -1] # 阻塞等级标签
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=42)
# 步骤 3: 训练梯度提升树模型
# 初始化梯度提升树回归模型
gbm = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42)
# 训练模型
gbm.fit(X_train, y_train)
# 步骤 4: 预测和评估模型
# 使用训练好的模型进行预测
y_pred = gbm.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Model Accuracy: {accuracy:.2f}')
# 步骤 5: 使用模型进行阻塞预测
# 假设我们有一组新的输电断面数据
new_data = np.array([[/* 新数据特征 */]]) # 需要填充新数据的特征值
# 使用模型进行预测
predicted_congestion_level = gbm.predict(new_data)
print(f'Predicted Congestion Level: {predicted_congestion_level[0]}')
# 步骤 6: 优化跨区购电能力
# 根据模型预测的阻塞等级,调整购电量计划
# 这里需要一个优化函数,该函数根据预测结果和电网约束来调整购电量
def optimize_power_purchase(predicted_levels, grid_constraints):
# 根据预测的阻塞等级和电网约束调整购电量的逻辑
# 这里需要根据实际电网的约束条件来编写优化逻辑
pass
# 调用优化函数
optimized_plan = optimize_power_purchase(predicted_congestion_level, grid_constraints)
print(f'Optimized Power Purchase Plan: {optimized_plan}')
注释解释:
- 步骤 1:导入了必要的Python库,包括用于数据处理的
numpy
和用于建模的sklearn
。 - 步骤 2:加载历史数据集,并将其分为特征和标签,然后划分为训练集和测试集。
- 步骤 3:初始化梯度提升树模型,并使用训练集数据训练模型。
- 步骤 4:使用测试集数据进行模型预测,并计算模型的准确率。
- 步骤 5:对新的输电断面数据进行阻塞等级预测。
- 步骤 6:根据模型预测的阻塞等级和电网约束条件,调整购电量计划。这一步需要根据实际电网的约束条件来编写优化逻辑。
请注意,上述代码是一个简化的示例,实际实现时需要根据具体的数据集结构和电网约束条件进行相应的调整。此外,优化函数optimize_power_purchase
需要根据电网的具体约束和目标来设计和实现。
本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》
论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html