迭代法的收敛条件及收敛阶

迭代法的收敛条件有三个定理,其中定理1、定理2讲的都是全局性收敛,定理3讲的是局部性收敛。

定理1:方程x = \varphi (x)\varphi (x)\in C[a,b],且满足以下两条件:

(1)当x\in [a,b]\varphi (x)\in [a,b]

(2)存在常数0<L<1,对任意的x,y\in [a,b],有|\varphi(x)-\varphi (y)|\leq L|x-y|

则(1)x=\varphi (x)[a,b]上有唯一解x^*

(2)任取x_0\in [a,b],由x_{k+1}=\varphi (x_k)得到的序列\lbrace{x_k}\rbrace收敛于x^*,即有\lim_{k\to\infty }x_k=x^*;

(3)成立误差估计式:

|x_k-x^*|\leq \frac{L}{1-L}|x_k-x_{k-1}|

|x_k-x^*|\leq \frac{L^k}{1-L}|x_1-x_0|k=1,2,3,\cdots

上面为事后估计式,表示可用相邻两次迭代值之差地绝对值来估计误差,可作为迭代终止条件。

下面称为事前估计式,可以估计出要达到给定精度\epsilon所需次数n

定理2:将定理1条件改为:

方程x = \varphi (x)\varphi (x)\in C[a,b]\varphi (x)(a,b)可导,且满足以下两条件:

(1)当x\in [a,b]\varphi (x)\in [a,b]

(2)|\varphi ' (x)|\leq L< 1,当x\in [a,b]

则结论同定理1。

定理3x^*是方程x=\varphi (x)的根,\varphi(x)x^*的一个邻域R=\lbrace{x||x-x^*|<\delta }\rbrace内导数存在,且存在正常数L<1,使|\varphi '(x)|\leq L< 1,则任取初值x_0\in R,迭代序列x_{k+1}=\varphi (x_k)收敛于x^*

反之,若在x^*的邻域R|\varphi '(x)|\geq 1,则迭代形式发散。

例题:判断用以下迭代法求f(x)=x^3-3x+1=0(1,2)的实根时的敛散性。

(1)x=\frac{1}{3}(x^3+1)

(2)x=\sqrt[3]{3x-1}=(3x-1)^{\frac{1}{3}}

解答:

(1)\varphi'(x)=x^2>1,故此迭代格式发散;

(2)\varphi'(x)=(3x-1)^{-\frac{2}{3}}<1,故此迭代格式收敛。


迭代法的收敛阶:

定义:设迭代过程x_{k+1}=\varphi (x_k)收敛于方程x=\varphi (x)的根x^*,如果迭代误差e_k=x_k-x^*,且\lim_{k \to \infty}\frac{|e_{k+1}|}{|e_k|^p}=c\neq 0成立,则称序列\lbrace{x_k}\rbrace收敛于x^*具有p阶收敛速度,简称\lbrace{x_k}\rbracep阶收敛的。常数c称为渐进收敛常数,也称为收敛因子。

p=1时称为线性收敛,此时必有0<c<1

p>1时称为超线性收敛;

p>2时称为平方收敛。

定理4:设x^*x=\varphi (x)的根,在x^*的邻域内有连续的p阶导数(p\geqslant 1),那么:

(1)若0<|\varphi '(x^*)|<1,则迭代过程在x^*的附近线性收敛;

(2)若\varphi '(x^*)=\varphi ''(x^*)=\cdots =\varphi ^{(p-1)}(x^*)=0,但\varphi ^{(p)}(x^*)\neq0,则迭代过程x_{k+1}=\varphi(x_k)x^*附近p阶收敛。

(3)\lim_{k \to \infty }\frac{e_{k+1}}{e_k^p}=\frac{1}{p!}\varphi^{(p)}(x^*)

 

例题:求迭代格式x_{k+1}=\frac{1}{2}x_k+\frac{1}{x_k}的收敛阶。

解答:该迭代格式收敛于方程x=\varphi(x)=\frac{1}{2}x+\frac{1}{x},解出x^*=\sqrt{2},-\sqrt{2}

运用定理4(2),求出:

\varphi'(x)=\frac{1}{2}-\frac{1}{x^2},\varphi'(x^*)=0

\varphi''(x)=\frac{2}{x^3},\varphi''(x^*)\neq0

故收敛阶为2。

  • 37
    点赞
  • 145
    收藏
    觉得还不错? 一键收藏
  • 19
    评论
牛顿迭代法是一种基于泰勒级数展开的迭代算法,用于求解非线性方程。在给定初始点$x_0$的情况下,该方法通过不断地利用函数$f(x)$在$x_k$处的一导数和二导数的信息来逼近方程的根。 牛顿迭代法的迭代公式为: $$ x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} $$ 其中,$f'(x_k)$表示$f(x)$在$x_k$处的一导数。 为了证明牛顿迭代法是一局部收敛的,我们需要满足以下两个条件: 1. $f(x)$在$x^*$处存在且连续; 2. $f'(x^*) \neq 0$。 在此基础上,我们可以得到以下结论: 当$x_0$足够接近$x^*$时,牛顿迭代法的迭代序列$\{x_k\}$收敛于$x^*$,且收敛速度是一的。 证明过程如下: 设$x_k$是迭代序列的第$k$项,$x^*$是$f(x)$的一个根,即$f(x^*)=0$。 根据泰勒级数展开,我们可以将$f(x_k)$在$x^*$处展开为: $$ f(x_k) = f(x^*) + f'(x^*)(x_k - x^*) + O((x_k - x^*)^2) $$ 代入牛顿迭代公式,得到: $$ x_{k+1} - x^* = x_k - x^* - \frac{f(x_k)}{f'(x_k)} = \frac{f(x^*) + f'(x^*)(x_k - x^*) + O((x_k - x^*)^2)}{f'(x^*) + O(x_k - x^*)} $$ 由于$f'(x^*) \neq 0$,所以分母不为零。在$x_0$足够接近$x^*$的情况下,我们可以忽略高项$O((x_k - x^*)^2)$,从而得到: $$ \lim_{k \to \infty} \frac{x_{k+1} - x^*}{(x_k - x^*)} = \frac{f'(x^*)}{f'(x^*)} = 1 $$ 这表明牛顿迭代法收敛速度是一的。同时,由于$f(x)$在$x^*$处连续,我们可以得到: $$ \lim_{k \to \infty} x_k = x^* $$ 这表明牛顿迭代法的迭代序列$\{x_k\}$收敛于$x^*$。因此,牛顿迭代法是一局部收敛的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值