数值计算笔记之迭代法的收敛性

回顾,雅可比以及高斯-赛德尔迭代阵

  • 雅可比迭代阵:G_{j}=I-D^{-1}A
  • 高斯-赛德尔迭代阵: G_{g-s}=-(D+L)^{-1}\cdot U

迭代法的收敛性

1、充分条件

定理1:若迭代阵 ||G|| <1 (范数),则迭代法公式 X^{k+1}=GX^{k}+d 对任意初值均成立。

例:

AX=b \Rightarrow \begin{bmatrix} 20 &2 &3 \\ 1 & 8 &1 \\ 2& -3 & 15 \end{bmatrix}\cdot \begin{bmatrix} x_{1}\\ x_{2}\\ x_{3} \end{bmatrix}= \begin{bmatrix} 24\\ 12\\ 30 \end{bmatrix}  ,判断上述迭代法的收敛性。

由 A 有:L=\begin{bmatrix} 0 & & \\ 1& 0& \\ 2& -3 & 0 \end{bmatrix} ,D=\begin{bmatrix} 20 & & \\ &8 & \\ & & 15 \end{bmatrix} ,U=\begin{bmatrix} 0 & 2 &3 \\ & 0& 1\\ & & 0 \end{bmatrix}

<1>、对于雅可比迭代法:

G_{j}=I-D^{-1}A= \begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \end{bmatrix}- \begin{bmatrix} \frac{1}{20} & & \\ &\frac{1}{8} & \\ & & \frac{1}{15} \end{bmatrix}\cdot \begin{bmatrix} 20 &2 &3 \\ 1& 8 & 1\\ 2& -3 &15 \end{bmatrix} =    \begin{bmatrix} 0 & -\frac{1}{10} &-\frac{3}{20} \\ -\frac{1}{8}& 0 & -\frac{1}{8} \\ -\frac{2}{15} &\frac{1}{5} &0 \end{bmatrix}

\because ||G_{j}|| = \frac{1}{3}<1  (行范数:取 各行数的绝对值之和 最大的那个和值)

\therefore  雅可比迭代法收敛。

<2>、对于高斯-赛德尔迭代法:

G_{g-s}=-(D+L)^{-1}\cdot U =-\begin{bmatrix} 20 & 0 & 0\\ 1 & 8 &0 \\ 2& -3 & 15 \end{bmatrix}^{-1}\cdot \begin{bmatrix} 0 & 2 &3 \\ &0 &1 \\ & & 0 \end{bmatrix} = \frac{1}{2400}\begin{bmatrix} 0 &-240 &-360 \\ 0& 30&-255 \\ 0 & 38 & -3 \end{bmatrix}

\because ||G_{g-s}||=\frac{1}{4}<1

\therefore 高斯-赛德尔迭代法收敛

求迭代阵很麻烦,下面有一种较方便的方法。

定理2:若AX=b 是对角占优方程组,则方程组有唯一解,且雅可比迭代与高斯-赛德尔迭代均收敛。

对角占优阵的定义:设矩阵 A=(a_{ij})_{n\times n} 满足 |a_{ii}| > \sum_{j=0}^{i-1}|a_{ij}|+\sum_{j=i+1}^{n}|a_{ij}|    (i=1,2,\cdots ,n) ,则称A 为对角占优阵,称 AX=b 为对角占优方程组。(即在某一行,对角元素绝对值大于除它以外的所有元素绝对值之和)

例:

AX=b \Rightarrow \begin{bmatrix} 10 &-1 &0 \\ -1& 10 &-2 \\ 0&-2 & 5 \end{bmatrix}\cdot \begin{bmatrix} x_{1}\\ x_{2}\\ x_{3} \end{bmatrix}= \begin{bmatrix} 9\\ -5\\ 12 \end{bmatrix}

显然, A 是对角占优阵,雅可比迭代与高斯-赛德尔迭代均收敛。

定理3:设有线性方程组 AX=b

  1. 若 A 对称正定,则高斯-赛德尔迭代收敛
  2. 若 A 对称正定2D-A 也对称正定,则雅可比迭代收敛
  3. 若 A 对称正定,2D-A 非正定,则雅可比迭代发散

矩阵各主子式都大于 0 \Rightarrow 正定

2、充要条件

  谱半径 定义:矩阵 A 的所有特征值模的最大值,称为 A 的谱半径,即 \rho(A)=max|\lambda _{i}|    (1\leq i\leq n).

定理4:迭代公式 x^{(k+1)}=GX^{(k)}+d 对任给初始向量 X^{(0)} 收敛的充要条件是 \rho (G)<1。(注意是 迭代阵的谱半径

 例:设 AX=bA=\begin{bmatrix} 1 & -2 &2 \\ -1 &1 &-1 \\ -2& -2 &1 \end{bmatrix} 

解:显然, A 不是对角占优阵,也不对称。

G_{J}=I-D^{-1}A=\begin{bmatrix} 0 &2 &-2 \\ 1 &0 &1 \\ 2& 2 &0 \end{bmatrix}   ,||G_{J}|| 都不小于1,所有用定理4.

求 G_{J} 的特征值

|\lambda I-G_{J}|=0  ,得  \begin{bmatrix} \lambda &-2 &2 \\ -1 & \lambda &-1 \\ -2 & -2 & \lambda \end{bmatrix}= \lambda ^{3}=0

\therefore \lambda _{1}=\lambda _{2}=\lambda _{3}=0

\therefore \rho (G_{J})=0<1

故 雅可比迭代收敛。

判断高斯-赛德尔迭代同理,不过 G_{g-s}=-(D+L)^{-1}\cdot U

总结:对于AX=b,判断收敛性

  1. A  为对角占优阵 \Rightarrow Jacobbi、Guass-seidel 迭代收敛。
  2. A 对称正定,则高斯-赛德尔迭代收敛;若 A 对称正定,2D-A 也对称正定,则雅可比迭代收敛。
  3. 求迭代矩阵 G,先判断 ||G||<1,再判断 \rho (G)<1
  • 54
    点赞
  • 224
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值