spark-pyspark实现基本词频计算-ssh远程测试-spark on yarn配置/启动-pyspark两种部署方式

基于pycharm中pyspark的使用

pyspark的计算过程
在这里插入图片描述

pycharm实现wordcount

注意点

错误说明: 找不到 java home

原因:
	当前python程序是通过ssh 连接到远端, 在远端进行执行的 , 在执行的时候, 需要加载各种环境变量, 而python代码在远端执行的时候, 主要是加载 .bashrc 文件, 但是这个文件中并没有配置jdk相关信息 从而导致无法使用

解决方案:
	需要修改 linux服务器中 /root/.bashrc 文件, 添加以下两行内容:
		export JAVA_HOME=/export/server/jdk1.8.0_241/
		export PYSPARK_PYTHON=/root/anaconda3/bin/python
	添加后, 执行 source  重新加载即可
		source /root/.bashrc
	说明:
		PYSPARK_PYTHON 设置的是 base环境的python环境即可 如果是其他虚拟环境的, 设置为:
			/root/anaconda3/envs/虚拟环境名称/bin/python    
			
	
说明: 在后续所有的spark的代码中, 都需要添加以下内容:
import os
# 读取hdfs的文件数据, 完成WordCount案例

# 目的: 锁定远端操作环境, 避免存在多个版本环境的问题
os.environ["SPARK_HOME"]="/export/server/spark"
os.environ["PYSPARK_PYTHON"]="/root/anaconda3/bin/python"
os.environ["PYSPARK_DRIVER_PYTHON"]="/root/anaconda3/bin/python"

本地实现

#spark程序的编写wordcount
#导入spark的对象
from pyspark import SparkContext, SparkConf

import os

os.environ["SPARK_HOME"]="/export/server/spark"
os.environ["PYSPARK_PYTHON"]="/root/anaconda3/bin/python"
os.environ["PYSPARK_DRIVER_PYTHON"]="/root/anaconda3/bin/python"


#程序的入口
if __name__ == '__main__':
    print('spark程序的入口')

    #创建sc(sparkContext)对象
    conf = SparkConf().setMaster('local[*]').setAppName('wordcount_01')
    sc = SparkContext(conf=conf)

    #编写wordcount案例
    #读取文件 读取本地文件: file:///   读取hdfs的协议:hdfs://node1:8020/  ,读取的时候是按行读取的
    rdd1 = sc.textFile("file:export/data/workspace/_01_pyspark_base/data/words.txt")

    #将读取到的每一行数据,进行切割操作,然后得到一个大列表,放置每一个单词
    # rdd2 = rdd1.map(lambda x: x.split(' '))
    #打印
    # print(rdd2.collect())

    #flatmap 第一个作用跟map的样,第二个作用对结果进行压扁得到一个大的列表
    rdd2 = rdd1.flatMap(lambda x: x.split(' '
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值