Extremal Region(极值区域)文本定位与识别法-学习笔记(三)

本文是关于计算机视觉项目中提升文本识别率的学习笔记,重点介绍了极值区域(ER)在文本定位与识别中的应用。通过递增计算描述子的方式,实现对ERs的快速分类,该方法内存占用小且计算复杂度为O(N)。文中详细阐述了Area和Bounding Box两种描述子的计算,并展示了如何通过像素的邻接关系影响区域描述子的值。
摘要由CSDN通过智能技术生成

最近做一个计算机视觉的项目,要将其中复杂场景中的文本识别率从92%进一步提升,挑战很大也很有意思。边阅读一些最新的文本定位与识别的论文,边在这里记下阅读笔记与翻译内容,慢慢研究。本人英语与专业水平有限,仅供学习参考,欢迎交流,请多指教。

Reference:Real-TimeScene Text Localization and Recognition    Luk´aˇsNeumann  Jiˇr´ı Matas  2012 IEEE

递增计算描述子(Incrementally computable descriptors)

极值区域快速分类的关键先决条件是对区域描述子的快速计算(区域描述子是分类器使用的特征)。

正如J. Matas and K.Zimmermann. A new class of learnable detectors for categorisation.  In Image Analysis, volume 3540 of LNCS, pages541–550. 2005. 论文中提到的,可以利用一种特定类型的描述子以及利用极值区域之间的包含关系来递增地计算描述子的值。

R θ−1 表示θ-1阈值下的极值区域(ERs),则ER r ∈ R θ 即在θ阈值下的极值区域 r是θ-1阈值下的极值区域与像素值为的像素的并集:

进一步假设所有在阈值u ∈ R θ-1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值