本章我们研究多项式乘法。
我们直接乘,时间复杂度是n^2。使用FFT则可以变成nlgn
编辑
可以看到两个n°的多项式,我们直接乘,每种组合都要试一遍,就会要是n^2遍
编辑
那么要怎么加速呢?
编辑
首先多项式可以通过这种方法来表示
记录下n个点,想要原版形式的话就解矩阵方程吧。
编辑
编辑
编辑
不过这种表示法太奇怪了,能不能来经典形式的?
编辑
这里解释一下单位根:
单位根是复数分析中的一个概念,它是指满足以下等式的复数 ωω:
ω^n=1
这里的 n 是一个正整数,表示单位根的阶数。换句话说,单位根是一个复数,当它被提升到 n 次幂时,结果为1。单位根在复平面上的单位圆上均匀分布。
分治法!
Fn矩阵计算起来很简单:
我不明白了!还是看查特吉皮提先生讲的吧。
首先说明一下,我们的目标是把系数多项式转化成点值多项式的形式,而这个过程的核心就是要求多项式的值。多项式的结构已经写好了。
这里解释一下。这里的x=1和-1有什么特别的原因吗?:
也就是说,因为我们现在处理的子问题长度为2,那么二次单位根就是这两个。可以这么理解,原本是四次单位根的(也就是会有i,-i这些牛鬼蛇神),但是分解成子问题的时候A是有x^2来做自变量的,因此牛鬼蛇神没有了,只剩下了1和-1.当然以后遇到更复杂的可能想不明白,就记着看多项式长度就行。
子问题解决了,我们回到一开始的计算:
上面用1,-1的原因在这里再一次体现了。说白了,其实最精髓的是这些取得恰到好处的x(也就是单位根),大大减小了我们的工作量。
现在我们得到了点值形式的多项式,现在来做A(x)B(x) = C(x)的问题很简单了。:
就这样我们强行弄出了2n个点,可以表示C了。
最后通过逆FFT,得到系数多项式。这里再讲讲逆FFT是怎么做的
举个例子:
……后面省略两个。
这样,我们本章的内容就学完了。