初试Spark之K-Means聚类算法实现

本文介绍了作者使用Spark实现K-Means聚类算法的过程,通过对比Hadoop MapReduce的复杂性,突显Spark的简洁高效。在实验中,32个一维样本点被成功聚类,经过4次迭代即达到收敛,验证了算法的有效性。代码实现简洁,体现了Spark RDD算子的强大功能。
摘要由CSDN通过智能技术生成

自学Spark有将近一个月了,一直想找一个稍微复杂点的例子练练手,K均值聚类算法实现是个不错的例子,于是有了这篇博客。

K均值聚类算法的原理本身很简单,大概思想就是:选取初始质心,根据这些质心将样本点聚类,聚类之后计算新的质心,然后重新将样本点聚类,不断循环重复“产生质心,重新聚类”这一过程,直至聚类效果不再发生明显变换。Hadoop的MapReduce计算框架虽然也能够实现这一算法,但是代码的实现过程实在是太恶心了,认识到Spark的简洁之后,义无反顾地投入到Spark的怀抱。

写代码时没想太多,测试数据的样本点都是一维的,32个样本点分散在三个区间中,分别是0.2至0.8,1.8至2.4,3.4至4,如下图所示

下面是代码:

 

package kmeans_spark

import java.util.Random
import java.lang.Math._
import org.apache.spark.rdd.RDD
import org.apache.spark._
import org.apache.spark.SparkContext._
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.linalg.Vector

object KMeans {
  def main(args: Array[String]) {
    val conf = new SparkConf().setAppName("kmeans in Spark")
    val sc = new SparkContext(conf)
    val input = args(0) //输入数据
    val output = args(1) //输出路径
    val k = args(2).toInt //聚类个数
    var s = 0d //聚类效果评价标准
    val shold = 0.1 //收敛阀值
    var s1 = Double.MaxValue
    var times = 0
    var readyForIteration = true
    val func1 = (x: (newVector, Int, Double)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值