如要下载编译器,请看我的之前博客
笔者现大三,这篇博文及后面的几篇博文都是对大二所做的题目一些总结,哈哈,感觉自己那时候学的还可以,希望自己这点笔记能对你们有点帮助吧,加油!!!其实数据结构也没传说中的那么难,并且以后在我们面试的时候,数据结构可是面试官的法宝,对吧,咱们不能输在起跑线线上,好了,废话不多说,现在让我们来学习表达式求值。我先把老师给我们出的题目给大家看看吧,不知道我们是不是一样的(纯洁的微笑),题目如下:
利用栈实现算术表达式的求值,表达式中可包含加+、减(负) -、乘*、除/、
乘方^、括号( )运算符,操作数可以为浮点数。 可采用直接求中缀表达式的方法,
也可采用先转换成后缀表达式后再求值的方法(参看课件) 。
实现时需注意如下:
( 1)带小数点的数值生成 ( 理解整数数值的生成,小数部分的处理与之类似)。
( 2)考虑负号的情况。负号与减号形式上一样,如何区分?
• 输入的表达式串中第 1 个字符是’-’
– 可断定此’-’是负号
• 其余的’-’
– 若紧接在’(’之后的’-’可断定是负号
( 3)负号的处理
• 方法 1:若已断定是负号,可先压入数值 0 进入操作数栈,如此,可
将负号看作减号。
• 方法 2: 若已断定是负号,则紧接其后的数字字符转换成数值后,要
将其对应的相反数(负数)压入操作数栈。
工程截图:
先建一个工程,头文件就不贴了,源代码里有,如果有需要,下面有下载地址,我们重点讲如何利用栈进行表达式求值的,
求表达式基本思想就是,首先读取输入的字符串,然后分别读出数字和操作符,如果是数字压入数字栈,如果是操作符与之前的操作符比较优先级,如果大,从数字栈中取出俩个数字运算再放入数字栈,如果小,操作符就压入操作符栈,遇到“=”停止,输入数字栈中的栈顶元素即为运算结果,代码如下(other.cpp):
#include"Sqstack.h"
#include"other.h"
double EvluateExpression(char str[],LinkStack &OPTR,LinkStack1 &OPND)
{
int i=0,t,j,falg=0;
double a,b,sum,s;
char theta,x;
InitStack(OPND);
InitStack(OPTR);
Push(OPTR,'#');
if(str[0]=='-')
{
Push(OPND,0);
}
while(str[i] !='#' || GetTop(OPTR)!='#')
{
if(str[i]>='0' && str[i]<='9')
{
sum=0;
while(str[i]>='0' && str[i]<='9') //将整数保存到sum中
{
sum=sum*10+str[i++]-'0';
}
if(str[i]=='.') //如果有小数点,将j移动下一个运算符之前的字符,从那个字符开始往后依次除10,直到小数点之后的那一位字符,与sum相加
{
s=0;
j=i+1;
while(str[j]>='0' && str[j]<='9')
{
j++;
}
for(t=j-1;t>i;t--)
{
s=s/10+str[t]-'0';
}
s=s/10;
//printf("%lf\n",s);
sum=sum+s;
i=j;
}
Push(OPND,sum);
}
else
{
if(str[i]=='-' && str[i-1]=='(')
{
Push(OPND,0);
}
switch(Precede(GetTop(OPTR),str[i]))
{
case '<':
Push(OPTR,str[i]);
i++;
break;
case '>':
Pop(OPTR,theta);
Pop(OPND,b);Pop(OPND,a);
Push(OPND,Operate(a,theta,b));
break;
case '=':
Pop(OPTR,x);
i++;
break;
}
}
}
return GetTop(OPND);
}
char Precede(char a, char b)
{
int i,j;
char Ns[7]={'+','-','*','/','(',')','#'};
char str[7][7]={'>','>','<','<','<','>','>',
'>','>','<','<','<','>','>',
'>','>','>','>','<','>','>',
'>','>','>','>','<','>','>',
'<','<','<','<','<','=',' ',
'>','>','>','>',' ','>','>',
'<','<','<','<','<',' ',' '};
for(i=0;i<7;i++)
{
if(Ns[i]==a)
break;
}
for(j=0;j<7;j++)
{
if(Ns[j]==b)
break;
}
return str[i][j];
}
double Operate(double a,char op,double b)
{
switch(op)
{
case '+':return a+b;break;
case '-':return a-b;break;
case '*':return a*b;break;
case '/':return a/b;break;
}
}
栈的基本操作函数(Sqstack.cpp)
#include"Sqstack.h"
#include"other.h"
void InitStack(LinkStack &OPTR)
{
OPTR=NULL;
}
void InitStack(LinkStack1 &s)
{
s=NULL;
}
void Push(LinkStack &OPTR,char e)
{
LinkStack p;
p=new StackNode;
p->data=e;
p->next=OPTR;
OPTR=p;
}
void Push(LinkStack1 &s,double e)
{
LinkStack1 p;
p=new StackNode1;
p->data=e;
p->next=s;
s=p;
}
char GetTop(LinkStack &OPTR)
{
if(OPTR!=NULL)
return OPTR->data;
}
double GetTop(LinkStack1 &s)
{
if(s!=NULL)
return s->data;
}
void Pop(LinkStack &s,char &e)
{
LinkStack p;
e=s->data;
p=s;
s=s->next;
delete p;
}
void Pop(LinkStack1 &s,double &e)
{
LinkStack1 p;
e=s->data;
p=s;
s=s->next;
delete p;
}
void DestoryStack(LinkStack &s)
{
LinkStack p;
while(s)
{
p=s;
s=s->next;
delete p;
}
}
void DestoryStack(LinkStack1 &s)
{
LinkStack1 p;
while(s)
{
p=s;
s=s->next;
delete p;
}
}
int StackEmpty(LinkStack s)
{
if(s==NULL) return ERROR;
}
int StackEmpty(LinkStack1 s)
{
if(s==NULL) return ERROR;
}
截图:
源码下载地址:http://pan.baidu.com/s/1slRFJzf