数据分析学习笔记3

线性回归模型与不服从正太分布时的t检验

1、线性回归模型
# 简单线性回归模型
sns.lmplot(x='Year',y='GDP',data=data,truncate=True)
fit = sm.formula.ols('GDP~Year',data=data).fit()  # 模型拟合
fit.params  # 查看模型参数

# 多元线性回归模型
fit=sm.formula.ols('Profit~RD_Spend+Administration+Marketing_Spend',data=data).fit()  # 初步拟合模型
fit.summary()  # 查看模型检验
fit2=sm.formula.ols('Profit~RD_Spend+Marketing_Spend',data=data).fit()  # 优化后模型拟合
pred=fit2.predict(data[['RD_Spend','Marketing_Spend']])  # 预测
x=pd.concat([pd.Series(data.Profit,name='real'),pd.Series(pred,name='prediction')],axis=1)  # 查看预测值与真实值结果
2、不服从正太分布时的t检验
# 单样本t检验
import numpy as np
stats.wilcoxon(np.array(data,dtype=float)-7725)  # 数据不服从正太分布时用wilcoxon检验

# 配对/独立样本t检验
stats.mannwhitneyu(data1,data2)  # 当数据不是正态分布时用mannwhitneyu检验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灯下夜无眠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值