【c++/数据结构】红黑树-RBTree

红黑树是一种近似平衡的二叉搜索树,保证最长路径不超过最短路径的两倍。插入操作可能导致不平衡,需要通过颜色调整和旋转操作恢复平衡。文章详细介绍了插入情况1、2、3的处理方式,包括颜色变化和旋转操作,确保路径上黑色节点数量不变。
摘要由CSDN通过智能技术生成

什么叫红黑树?

同AVL树一样,红黑树也是近似平衡的二叉搜索树,与AVL树不同的是红黑树没有了平衡因子,但增加了一个枚举变量,来标明结点的颜(RED or BLACK)。因为红黑树可以保证它的最长路劲不超过它最短路径的两倍,所以它近似平衡。

红黑树具有以下几点性质:
1. 每个结点都必须具有一种颜色(RED or BLACK)。
2. 根结点为黑色。
3. 如果一个结点为红色,那么它的两个孩子结点均为黑色(没有连续的红结点)。
4. 对于每个结点,该结点到其所有后代叶子结点的路径上,黑色结点的数量相同。
5. 每个空结点(NIL结点)都当作一个黑色结点。

下图为一棵简单的红黑树:
这里写图片描述

如何去创建并维护一棵红黑树?

红黑树的难点与AVL树相同,插入一个结点并不难,难点在于插入一个结点后,很容易破坏这棵树的平衡,我们就需要做一些调整工作让这棵树恢复平衡 。
那么什么时候需要我们做调整工作呢?看上面红黑树性质第三点,一棵红黑树需要满足没有连续的红结点。
需要调整的两种情况:
1. 当我们对一个红结点下插入一个红结点时,出现了连续的红结点。调整。
2. 调整需要改变结点的颜色,当我们把一个黑结点变为红结点,而恰好这个结点的父亲是一个红结点。又出现了连续的红结点。继续调整。

同时,性质第4点也很重要, 对于每个结点,该结点到其所有后代叶子结点的路径上,黑色结点的数量相同。当我们对一棵子树进行调整,这棵子树也可能拥有一棵兄弟子树,所以我们不能改变当前子树上黑色节点的数量,即路径上黑结点的数量不能改变。
总结下来,调整方案就是:遇到连续红结点就调整,调整的同时要保证路径上黑色节点的数量不变。

PS:①在下面的讲解中会改变结点的颜色,当我们遇到连续的红结点并进行调整时,我们并不知道这个红结点怎么来的,可能是新插入的,也可能是之前的调整由黑结点变过来的。②叔叔结点(uncle)。③a、b、c、d、e均为子树,若一个为空,则都为空,此时cur为新插入结点。若不为空,则都不为空,此时cur为被调整改变的结点。注意这个三个概念,会帮助我们理解下面的讲解。

插入情况1:

当前结点cur为红,父亲结点parent为红,gparent为黑,叔叔结点uncle存在且为红

这里写图片描述

这里写图片描述

这种情况我们只需要改变结点颜色,不需要挪动结点位置。
颜色调整:将parent与叔叔结点uncle的颜色变为黑色,将gparent的颜色变为红色。
继续向上调整:令cur = gparent,parent = gparent->_parent。继续向上调整。

代码

uncle->_col = parent->_col = BLACK;
Gparent->_col = RED;// Gparent 可能为子树,保证黑色节点数量不变

//继续向上调整
cur = Gparent;
parent = cur->_parent;              

插入情况2:

当前结点cur为红色,parent为红色,gparent为红色,叔叔结点uncle不存在或者为黑。(ps:当uncle结点不存在时,所有子树都不存在,cur为新插入结点,当uncle存在且为黑时,cur为被调整改变的结点。以下我们以uncle存在且为黑为例。)

这个情况又可分为两种小情况:
① parent为gparent的左孩子,cur为parent的左孩子。
这里写图片描述
这种情况需要对gparent进行右单旋操作,看过之前我写的AVL树讲解的朋友们相信已经对旋转操作不再陌生了,这里我再讲一下。
旋转操作:将parent的右子树变成gparent的左子树,将gparent以及其子树变成parent的右子树。将gparent的父亲结点指向parent。
颜色调整:将parent的颜色变成黑色,将gparent的颜色变成红色。
继续向上调整:令cur = parnet, parent = parent->_parnet.

代码:

void RotateR(Node* parent)
{
    Node* SubL = parent->_left;
    Node* SubLR = SubL->_right;
    parent->_left = SubLR;

    if (SubLR)
    {
        SubLR->_parent = parent;
    }

    Node* ppNode = parent->_parent;

    SubL->_right = parent;
    parent->_parent = SubL;

    if (ppNode)
    {
        if (ppNode->_left == parent)
            ppNode->_left = SubL;
        else
            ppNode->_right = SubL;
        SubL->_parent = ppNode;
    }
    else
    {
        SubL->_parent = NULL;
        _root = SubL;
    }
}

② parent为gparent的右孩子,cur为parent的右孩子。
这里写图片描述
这种情况需要对gparent进行左单旋操作。
旋转操作:将parent 的左子树变为gparent的右子树,将gparent以及其子树变成parent的左子树,将gparnet的父亲结点指向parent。
颜色调整:将parent变为黑色,将gparent变为红色。
继续向上调整:令cur = parent,parent = parent->_parent。

代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值